
XPS USB Host Controller

Technical Brief 20141216 from Missing Link Electronics:

XPS USB Host Controller Developer's Guide

This MLE Technical Brief is intended for embedded systems and FPGA designers who
seek to integrate the XPS_USB_HOST Controller IP Core. Originally developed and shipped
by Xilinx, Inc. MLE has been marketing and supporting this IP core for Xilinx customers,
since October 2011. This Technical Brief gives you an introduction into the functionality
of USB 2.0 in general, describes the usage in a FPGA design and provides references to
further documentation.

Foundation of this Technical Brief is the XPS_USB_Host Controller Linux Reference De-
sign from MLE. Using this reference design the various modes of USB can be evalu-
ated based on some basic and easy to reproduce test-cases. This highlights how the
XPS_USB_HOST Controller IP Core operates in conjunction with Linux running on an em-
bedded CPU (Xilinx MicroBlaze or PowerPC) inside a Xilinx FPGA device.

Copyright © 2014 Missing Link Electronics. All rights reserved. Missing Link Electronics, the stylized Missing Link Electronics
MLE logo are the service mark and/or trademark of Missing Link Electronics, Inc. All other product or service names and
trademarks are the property of their respective owners.

Technical Brief 20141216 MissingLinkElectronics.com Page 1

XPS USB Host Controller

— Technical Brief 20141216 —

Contents

1 USB Backgrounder 3
1.1 Speed Modes of USB . 3
1.2 Bus Topology of USB . 3
1.3 Transfer Types of USB . 3
1.4 USB Hot Plug . 4
1.5 Further Documentation . 4

2 The XPS_USB_HOST Controller IP Core 5
2.1 Supported Features . 5
2.2 Supported Speed Modes . 6
2.3 Revisions and Deliverables . 6
2.4 License Management . 7
2.5 Timing Closure . 9

3 The XPS_USB_Host Controller Linux Reference Design 15
3.1 Getting Started . 15

3.1.1 Hardware . 15
3.1.2 Linux . 16
3.1.3 CF-Card Boot Image . 17
3.1.4 ML507 Board Settings . 18
3.1.5 Starting Up . 19

3.2 About the Design . 19
3.2.1 Design Components . 19
3.2.2 I/O-Standards for the ML507 board . 20
3.2.3 Pin-out for the ML507 board . 21
3.2.4 Software / Linux / Driver . 21

4 Designing with AXI under Vivado 23

5 Analysis and Testing 24
5.1 Testing Speed Modes . 24
5.2 Testing USB Device Connectivity . 24

5.2.1 USB Low-Speed Devices . 25
5.2.2 USB Full-Speed Devices . 25
5.2.3 USB High-Speed Devices . 26

5.3 Diagnosing the Evaluation License Time-bomb 27

Technical Brief 20141216 MissingLinkElectronics.com Page 2

XPS USB Host Controller

1 USB Backgrounder

Universal Serial Bus (USB) is an industry standard developed in the mid-1990s. Used ca-
bles, connectors and communication protocols for connection, communication and power
supply between computers and electronic devices are de�ned therein.

1.1 Speed Modes of USB

USB 2.0 declares the speed modes low-speed, full-speed and high-speed. Not every USB
2.0 device must support all three speed modes. The XPS_USB_HOST Controller IP Core
only supports full-speed and high-speed modes.

1.2 Bus Topology of USB

The USB physical interconnect is a tiered star topology. A hub is at the center of each star
and the wire segments are point-to-point connections.

There is only one USB host in a USB hierarchy. The USB interface to the host computer
system is referred to as host controller. This host controller may be implemented in a
combination of hardware, �rmware, or software. A root hub is integrated within the host
system to provide one or more attachment points.

USB devices are either hubs, which provide additional attachment points to the USB or
functions, which provide capabilities to the system, such as e.g. keyboards, web-cams,
storage devices, or speakers.

USB On-The-Go (OTG) allows USB devices to act as USB host. This enables the device
to switch operation between host and device.

The XPS_USB_HOST Controller IP Core can only act as a USB host.

1.3 Transfer Types of USB

USB supports functional data and control exchange between the USB host and a USB
device as a set of either uni-directional or bi-directional pipes. USB data transfers take
place between host software and a particular endpoint on a USB device. In general, data
movement though one pipe is functionally independent from the data �ow in other pipes.

The USB architecture comprises four basic types of data transfers:

Control-Transfer:
Control data is used by the USB system software to con�gure de vices when they are �rst
attached. Other driver software can choose to use control transfers in implementation-
speci�c ways. Data delivery is loss-less.

Technical Brief 20141216 MissingLinkElectronics.com Page 3

XPS USB Host Controller

Bulk-Transfer:
Bulk data typically consists of larger amounts of data, for example used for printers or scan-
ners. Bulk data is sequential. Reliable exchange of data is ensured at the hardware level
by using error detection in hardware and invoking a limited number of retries in hardware.
Also, the bandwidth taken up by bulk data can vary, depending on other bus activities.

Interrupt-Transfer:
A limited-latency transfer to or from a device is referred to as interrupt data. Such data may
be presented for transfer by a device at any time and is delivered by the USB at a rate no
slower than speci�ed by the device. Interrupt data typicall y consists of event noti�cation,
characters, or coordinates that are organized as one or more bytes. Unlike the name
suggests, a USB device does not trigger CPU interrupts. The USB host has to poll devices
for new information.

Isochronous-Transfer:
Isochronous data is continuous and real-time in creation, delivery, and consumption. Timing-
related information is implied by the steady rate at which isochronous data is received and
transferred. Isochronous data must be delivered at the rate received to maintain its timing.
A typical example of isochronous data is voice. The timely delivery of isochronous data is
ensured at the expense of potential transient losses in the data stream. In other words, any
error in electrical transmission is not corrected by hardware mechanisms such as retries.

The XPS_USB_HOST Controller IP Core supports all transfer types of the USB 2.0 stan-
dard listed above.

1.4 USB Hot Plug

USB 2.0 is hot pluggable by speci�cation. This means that a US B device can be plugged
to a running system. The XPS_USB_HOST Controller IP Core is ready for hot plugging.

1.5 Further Documentation

The information in this chapter is derived from USB 2.0 speci�cation [1]. For further infor-
mation please see the following documentations:

• USB 2.0 speci�cation [1]

• MLE website for the XPS_USB_HOST Controller IP Core [2]

• Xilinx data-sheet for the XPS_USB_HOST Controller IP Core [3]

• Xilinx Wiki - USB Host System Setup [4]

• Xilinx Wiki - USB Host Controller Driver [5]

Technical Brief 20141216 MissingLinkElectronics.com Page 4

XPS USB Host Controller

2 The XPS_USB_HOST Controller IP Core

The XPS_USB_HOST Controller IP Core is designed to act as controller of a USB host
PHY. USB On-the-Go is not supported. Further a ULPI USB PHY is required to act with
the IP core. Such a PHY can be e.g. a MLE-PHY or a USB3300 USB HS Board from
Waveshare [6].

Figure 1 shows the block diagram of the core.

Figure 1: Block diagram of the xps_usb_host-Core

2.1 Supported Features

The XPS_USB_HOST Controller IP Core:

• supports full-speed and high-speed modes,

• is a USB host (and only a host),

• supports all transfer types of USB 2.0,

• supports hot plugging,

• is EHCI compliant and, thereby, supported by Linux.

Technical Brief 20141216 MissingLinkElectronics.com Page 5

XPS USB Host Controller

2.2 Supported Speed Modes

By default the XPS_USB_HOST Controller IP Core supports only the high-speed mode.
As an option the full-speed mode can also be enabled, this must be done prior to FPGA
synthesis. Figure 2 shows the XPS Core Con�g of the XPS_USB_HOST Controller IP
Core with enabled full-speed Support and Listing 1 shows the corresponding line in the
MHS-�le (change the parameter to 0 to disable Full-speed mode). The low-speed mode is
not supported at all.

Figure 2: XPS Core Con�g of the xps_usb_host-Core

Listing 1: parameter for enabled full-speed mode in mhs-�le
1 PARAMETER C_SUPPORT_USB_FS = 1

2.3 Revisions and Deliverables

There are different varieties of the XPS_USB_HOST Controller IP Core available. How
they can be purchased and what has to be considered because of their licensing is shown
in Table 1.

Originally shipped with Xilinx ISE are so-called Evaluation Cores which comprise a time-
bomb. This time-bomb will trigger after approximately eight hours, effectively disabling the
operation of the XPS_USB_HOST Controller IP Core. Please contact MLE [7] to get a fully
licensed IP Core without any time-bombs. You will receive two packages: (1) pcore for
EDK and (2) FLEXlm license key �le.

Technical Brief 20141216 MissingLinkElectronics.com Page 6

XPS USB Host Controller

Table 1: versions of XPS_USB_HOST Controller IP Core and license options

IP version delivery license

1.00.a Xilinx ISE 11.x evaluation only
1.01.a Xilinx ISE 11.x & 12.x evaluation only
1.02.a MLE compile-time license
2.00.a MLE compile-time license

The XPS_USB_HOST Controller IP Core can be used like any other pcore: Unpack both
packages into your design project. The corresponding core directory, e.g. "xps_usb_host_v2_00_a",
has to be copied into the pcore directory of the design project. If the XPS GUI is already
open, it is required to rescan the user repositories. To install the FLEXlm license key �le
please read the Xilinx user guide UG798 [8] or follow the instructions shipped with the
license key �le.

2.4 License Management

To build a design with the XPS_USB_HOST Controller IP Core a license key is required.
The different licenses are described above and the following will describe the handling of
licenses and cores from MLE.

In the GUI of XPS it is possible to check the Design License Status under the Hardware
section. Because it is a compile-time license key this window looks like Figure 3. This win-
dow is also shown at the end of every build process (in GUI mode) of a design instantiating
this core.

Figure 3: Design License Status of a design including the XPS_USB_HOST Controller IP Core

To check the license status of the XPS_USB_HOST Controller IP Core start the Xilinx Li-
cense Con�guration Manager. If the licensing is okay, the en try ipmsnglnk_xps_usb_ehci_full
will be displayed as shown in Figure 4 with green highlighted entries for the correct Host

Technical Brief 20141216 MissingLinkElectronics.com Page 7

XPS USB Host Controller

Figure 4: Xilinx License Con�guration Manager

id and License CRC. For more information on licensing please see the Xilinx User Guide
UG798 [8].

After a successful build of a design instantiating the XPS_USB_HOST Controller IP Core
the message of Listing 2 can be found in the log �le. Please note that the license is
(erroneously) called Hardware Evaluation even though a proper license key has been in-
stalled.

Listing 2: Message in log �le after build with valid license k ey
1 INFO: coreuti l - Hardware Evaluation license for component <xps_usb_host > found . The

generated design wil l cease to function in the programmed de vice after operating
for some period of t ime . This allows you to evaluate the compo nent in hardware .
You are encouraged to license this component .

2 For ordering information , please refer to the product page f or this component on: www
. xil inx . com

Without a valid license key the build will stop with an error case, printing one of the following
error messages on the console. Listing 3 shows the error that occurs while building a
design with a wrong host ID in the license key. Listings 4 and 5 show the error output
on console and in the called output �le when building a design with the XPS_USB_HOST
Controller IP Core without any license key for this core.

Listing 3: Error message while building a design with the XPS_USB_HOST Controller IP Core with
a wrong host ID in the license key �le

1 ERROR :EDK - INFO: Security :67 - XILINXD_LICENSE_FILE is set to
2 '/ home/ share /old -opt / xi l inx121 / ISE_DS /EDK /data / core _l icenses :/ home/ fass / user
3 /. Xil inx :/ home / fass / user /. mlew/ xi l inx / l icense .all ' i n
4 /home / fass / user /. f lexlmrc .
5 INFO: Security :68 - Please run the Xil inx License Conf igura t ion Manager
6 (xlcm or " Manage Xil inx Licenses ")

Technical Brief 20141216 MissingLinkElectronics.com Page 8

XPS USB Host Controller

7 to assist in obtaining a license .
8 ERROR : Security :14 - No feature was available for 'XPS '.
9

10 Invalid host .
11 The hostid of this system does not match the hostid
12 specif ied in the license fi le .
13 Feature : XPS
14 Hostid : 902 b3431171e
15 License path :
16 (...)

Listing 4: Error message on console while building a design with the XPS_USB_HOST Controller
IP Core without license key

1 INFO:EDK - The following instances are synthesized with XST . The MPD option
2 IMP_NETLIST =TRUE indicates that a NGC file is to be produced using XST
3 synthesis . IMP_NETLIST = FALSE (default) instances are not synthesized .
4 INSTANCE : xps_usb_host_1 -
5 /home / fass / user / workspace / usb_core_test ing / ML_noLic _unencr ipted_mle507 / syste
6 m.mhs line 378 - Running XST synthesis
7 ERROR :Xst :1484 - A core is unlicensed !
8 ERROR :EDK - Aborting XST flow execution !
9 INFO:EDK - Refer to

10 /home / fass / user / workspace / usb_core_test ing / ML_noLic _unencr ipted_mle507 /sy
11 nthesis / xps_usb_host_1_wrapper_xst . srp for detai ls
12
13 Running NGCBUILD ...
14
15 Rebuilding cache ...
16 ERROR :EDK - platgen fai led with errors !
17 make : *** [implementat ion / xps_usb_host_1_wrapper .ngc] Error 2

Listing 5: Error message in log �le "`xps_usb_host_1_wrapper_xst.srp"', mentioned on console
1 Analyzing hierarchy for entity < xps_usb_host_1_wrapper > in l ibrary <work > (

archi tecture <STRUCTURE >) .
2 INFO: coreuti l - No license for component < ipmsnglnk_xps_u sb_ehci_ful l > found . You may

use the customizat ion GUI for this component but you wil l not be able to
generate any implementat ion or simulation fi les .

3
4 For l icense instal lat ion help , please visit :
5 www . xil inx . com / ipcenter / ip_license / ip_l icensing_hel p .htm
6
7 For ordering information , please refer to the product page f or this component on:

www . xil inx . com FLEXlm Error : No such feature exists . (-5 ,2 1)
8 ERROR :Xst :1484 - A core is unlicensed !

2.5 Timing Closure

To ensure a proper timing of the signals between XPS_USB_HOST Controller IP Core and
USB PHY it is necessary to set constraints as described below. This constraints can be
found in the provided UCF-�le. Figure 5 shows the timing of the ULPI signals with the delay
times of the USB3300 PHY as declared in the data sheet [9].

PLB-Clock :
In the design example the PLB_CLK runs with 100 MHz (clock period = 10 ns) and 50 %
duty cycle. Master and slave PLB of the XPS_USB_HOST Controller IP Core must run at
the same clock. The constraint to this clock is shown in Listing 6.

Technical Brief 20141216 MissingLinkElectronics.com Page 9

XPS USB Host Controller

Figure 5: ULPI signals timing of the XPS_USB_HOST Controller IP Core

Listing 6: PLB-clock constraints
1 # Set the PLB_CLK constraints
2 NET " PLB_CLK " TNM_NET = " PLB_CLK ";
3 TIMESPEC " TS_PLB_CLK " = PERIOD " PLB_CLK " 10 ns HIGH 50%;

ULPI-Clock :
The ULPI_CLK runs with 60 MHz (clock period = 16667 ps) and 50 % duty cycle. This is
constrained in Listing 7.

Listing 7: ULPI-clock constraints
1 # Set the xps_usb_host_0_ULPI_Clock_pin constraints
2 Net " xps_usb_host_0_ULPI_Clock_pin " CLOCK_DEDICATED_ROUTE = FALSE ;
3 Net " xps_usb_host_0_ULPI_Clock_pin " TNM_NET = " xps_usb_host_0_ULPI_Clock_pin ";
4 TIMESPEC TS_xps_usb_host_0_ULPI_Clock_pin = PERIOD " xps_usb_host_0_ULPI_Clock_pin "

16667 ps HIGH 50%;

Delay Offset of Dir-pin :
ULPI_Dir switches the direction of the data signals between input and output. The switching
delay must be smaller than 5 ns, because of signal validity in the communication with the
ULPI PHY. To have a safety gap of 0.5 ns we set the MAXDELAY to 4.5 ns, like constrained
in Listing 8.

Listing 8: Delay offset of Dir-pin
1 # Set MAX DELAY constraint on ULPI_Dir pin
2 NET " xps_usb_host_0/ ULPI_Dir " MAXDELAY =4.5 ns ;

Clock Domain Crossing between PLB and ULPI :
To constrain the clock domain crossing between the PLB and ULPI domains the code of
Listing 9 is required.

Listing 9: Clock domain crossing between PLB and ULPI
1 # Cross clock domain timing Constraints between ULPI_Clk an d SPLB_Clk
2 # DMA is included and both slave and master plb clock frequenc ies are EQUAL
3 NET " xps_usb_host_0/ ULPI_Clock " TNM_NET = " ulpi_0_clock _net ";
4 NET " mb_plb / PLB_Clk " TNM_NET = " splb_0_clock_net ";
5 TIMEGRP " ulpi_0_clock_grp " = " ulpi_0_clock_net ";

Technical Brief 20141216 MissingLinkElectronics.com Page 10

XPS USB Host Controller

6 TIMEGRP " splb_0_clock_grp " = " splb_0_clock_net ";
7 TIMESPEC TS_splb_0_to_ulpi_0_clk = FROM " splb_0_clock_grp " TO " ulpi_0_clock_grp " 32.2

ns DATAPATHONLY; # (2 * ULPI Clock period - 1)
8 TIMESPEC TS_ulpi_0_to_splb_0_clk = FROM " ulpi_0_clock_g rp " TO " splb_0_clock_grp " 19.0

ns DATAPATHONLY; #(2 * PLB Clock period â€“ 1)

ULPI-inputs :
The ULPI_Inputs are constrained with the code of Listing 10 and explained below.

Listing 10: ULPI-inputs constraints
1 NET " xps_usb_host_0_ULPI_Data_pin <0>" TNM = ULPI_INPUTS;
2 NET " xps_usb_host_0_ULPI_Data_pin <1>" TNM = ULPI_INPUTS;
3 NET " xps_usb_host_0_ULPI_Data_pin <2>" TNM = ULPI_INPUTS;
4 NET " xps_usb_host_0_ULPI_Data_pin <3>" TNM = ULPI_INPUTS;
5 NET " xps_usb_host_0_ULPI_Data_pin <4>" TNM = ULPI_INPUTS;
6 NET " xps_usb_host_0_ULPI_Data_pin <5>" TNM = ULPI_INPUTS;
7 NET " xps_usb_host_0_ULPI_Data_pin <6>" TNM = ULPI_INPUTS;
8 NET " xps_usb_host_0_ULPI_Data_pin <7>" TNM = ULPI_INPUTS;
9 NET " xps_usb_host_0_ULPI_Dir_pin " TNM = ULPI_INPUTS ;

10 NET " xps_usb_host_0_ULPI_Nxt_pin " TNM = ULPI_INPUTS ;
11 TIMEGRP " ULPI_INPUTS " OFFSET = IN 11.667 ns VALID 13.667 ns BEFORE "

xps_usb_host_0_ULPI_Clock_pin " RISING ;

The ULPI_INPUTS are output signals of the USB-PHY and they show delays relating to
the ULPI_CLK. In the case of a USB3300-PHY this delay amounts between 2 ns and 5 ns.
This means ULPI_INPUTS signals are valid from 2 ns to 5 ns after each rising edge of
ULPI_CLK. This values have to be subtracted from clock period of the ULPI_CLK:
16.667 ns - 5 ns = 11.667 ns
16.667 ns - (5 ns - 2 ns) = 13.667 ns
So the ULPI_INPUTS signals are valid from 11.667 ns ns to 13.667 ns ns before each rising
edge of ULPI_CLK, like set in line 11 of Listing 10.

ULPI-outputs :
The ULPI_OUTPUTS are constrained with the code of Listing 11 and explained below.

Listing 11: ULPI-outputs constraints
1 NET " xps_usb_host_0_ULPI_Data_pin <7>" TNM = ULPI_OUTPUTS;
2 NET " xps_usb_host_0_ULPI_Data_pin <6>" TNM = ULPI_OUTPUTS;
3 NET " xps_usb_host_0_ULPI_Data_pin <5>" TNM = ULPI_OUTPUTS;
4 NET " xps_usb_host_0_ULPI_Data_pin <4>" TNM = ULPI_OUTPUTS;
5 NET " xps_usb_host_0_ULPI_Data_pin <3>" TNM = ULPI_OUTPUTS;
6 NET " xps_usb_host_0_ULPI_Data_pin <2>" TNM = ULPI_OUTPUTS;
7 NET " xps_usb_host_0_ULPI_Data_pin <1>" TNM = ULPI_OUTPUTS;
8 NET " xps_usb_host_0_ULPI_Data_pin <0>" TNM = ULPI_OUTPUTS;
9 NET " xps_usb_host_0_ULPI_Stp_pin " TNM = ULPI_OUTPUTS;

10 TIMEGRP " ULPI_OUTPUTS" OFFSET = OUT 11.667 ns AFTER " xps_usb_host_0_ULPI_Clock_pin "
RISING ;

The ULPI_OUTPUTS are the input signals at the USB PHY and need to have a setup time
before each rising edge of the ULPI_CLK. In the case of a USB3300 PHY this delay is
5 ns. This means ULPI_OUTPUTS signals have to be valid 5 ns before each rising edge of
ULPI_CLK, which can be set as shown in Listing 12.

Listing 12: ULPI-outputs timing
1 TIMEGRP " ULPI_OUTPUTS" OFFSET = OUT 5 ns BEFORE " xps_usb_host_0_ULPI_Clock_pin "

RISING ;

Technical Brief 20141216 MissingLinkElectronics.com Page 11

XPS USB Host Controller

It is also possible to calculate the inverse. This means that ULPI_OUTPUTS signals are
valid 16.667 ns - 5 ns = 11.667 ns after each rising edge of ULPI_CLK, like set in line 10 of
Listing 11.

Issue:
It may happen, that the constraint for ULPI_Dir, as described in Listing 8, is not met during
implementation of the XPS_USB_Host Controller Linux Reference Design. In this case the
error message shown in Listing 13 will appear on the console.

Listing 13: Error on console when the timing of a design is not met
1 ERROR : 1 constraint not met .
2 PAR could not meet all t iming constraints . A bitstream wil l n ot be generated .

The source of the timing problem can be found in the timing report under:

<design>/implementation/system.twr

If the error is as expected, a negative slack of ULPI_Dir can be found in the log �le:

Listing 14: Negative slack of ULPI_Dir in the log �le
1 Slack : -0.001 ns xps_usb_host_0 / xps_usb_host_0 / I_USBHC _LM / ulpi2mlc_ulpi_dir
2 Error : 4.501 ns delay exceeds 4.500 ns timing constraint by 0 .001 ns

Explanation:
ULPI_Dir switches the direction of the data signals between input and output. The switching
delay must be smaller than 5 ns because of signal validity in the communication with the
ULPI PHY. To have a safety gap of 0.5 ns the MAXDELAY is set to 4.5 ns. This is constraint
in the ucf-�le as shown in Listing 8. The problem is, that the constraint will not be met if we
use a MAXDELAY of 5 ns, too. In this case the tool limits the rooting effort and the slack on
this wire could be even worse, e.g. - 0.046 ns.

Workaround:
XPS doesn't support manual optimization of a design, but it is possible to treat timing
failures not as errors. This can be set in the system.xmp with the instruction of Listing 15.

Listing 15: Instruction for XPS to treat timing failures not as errors
1 EnableParTimingError : 0

This command will be ignored when building the design on console, so it is required to use
the GUI of XPS. The option EnableParTimingError can also be disabled under:

Project ! Project Options ! Design Flow

Remove the check mark for option "Treat timing closure failure as error" as shown in Fig-
ure 6. After that the bitstream can be generated via:

Hardware ! Generate Bitstream

Attention:
This workaround is potentially dangerous, as it may hide other timing violations that exist
in the design. Please carefully review all newly calculated timings for the design once the
bitstream has been generated. This can be easily done in the Design Summary under:

Technical Brief 20141216 MissingLinkElectronics.com Page 12

XPS USB Host Controller

Figure 6: Project Options to disable EnableParTimingError

Design Overview ! Timing Constraints

An example is shown in Figure 7. Check the column Met: Usually all entries should be
stated as Yes. If there is an No analyze the Worst Case Slack in this line. If it is the said
problem with the constraint for ULPI_Dir, this slack must be smaller than 0.5 ns! In the
example of Figure 7 it is just -0.001 ns. Again, if there are other timing constraints not met,
you must carefully analyze those timing violations!

Technical Brief 20141216 MissingLinkElectronics.com Page 13

XPS USB Host Controller

Figure 7: Review Timing Constraints after bitstream is ready

Technical Brief 20141216 MissingLinkElectronics.com Page 14

XPS USB Host Controller

3 The XPS_USB_Host Controller Linux Reference Design

To ease the integration of the XPS_USB_HOST Controller IP Core with Xilinx MicroBlaze
running Linux, MLE has put together an integrated, pre-validated reference design. This
reference design is based on the PLB architecture and uses a big-endian MicroBlaze im-
plementation in a Virtex-5 FPGA. As a hardware platform for USB evaluation and testing
MLE uses the Xilinx ML507 [10] development kit. The following describes the relevant
setup for testing the XPS_USB_HOST Controller IP Core on the ML507. Feel free to use
those settings as an example to make the XPS_USB_HOST Controller IP Core work on
your target hardware.

An AXI-based reference design integrating Linux with a little-endian MicroBlaze is in works.
Please contact us for more information.

3.1 Getting Started

This section gives a step by step instruction on how to build the ML507 MicroBlaze USB
design on a Linux workstation.

3.1.1 Hardware

Go to the hw directory and start a Xilinx EDK 14.7 environment. To build the DTS-�le for
the design, type:

make system.dts

When the DTS-�le is ready, it is located in the hw directory.

Subsequently start Xilinx Platform Studio (XPS) to implement the hardware, type:

xps

and open the project:

hw/system.xmp

Then disable treating errors by timing closure, click:

Project - Project Options - Design Flow

and untick the option as shown in Figure 6:

Treat timing closure failure as an error

Next start generation of the bitstream, click:

Hardware - Generate Bitstream

This will take about 30 minutes, depending on the running machine.

After the bitstream is generated, review the timing summary as shown in Figure 7. Click:

Technical Brief 20141216 MissingLinkElectronics.com Page 15

XPS USB Host Controller

Design Overview - Timing Constraints

Check the Worst Case Slack in the line with the entry No in the column Met. It must be
smaller than 0.5ns! If the timing is okay, close XPS. The bitstream is can be found in:

hw/implementation/system.bit

3.1.2 Linux

This section gives a step by step instruction on how to build the Linux kernel for the ML507
MicroBlaze USB design. First you have to build the hardware-design and an DTS-File for
the given design. These steps are described above.

Change to a Xilinx EDK 14.7 environment, then checkout the Linux kernel sources. MLE
recommends to use the source code provided by Xilinx. The easiest way to do this is
by cloning the GIT-Repository and checkout the Tag xilinx-v2014.3 by executing in the sw
directory of the design example:

git clone https://github.com/Xilinx/linux-xlnx -b xilinx-v2014.3

Once this is done we must apply a little patch to be able to use the driver for the XPS_USB_HOST
Controller IP Core. This patch only adds a missing include to the �le drivers/usb/host/ehci-
xilinx-of.c. Just go into the linux-xlnx directory and execute:

cd linux-xlnx

git apply ../0001-ehci-xilinx-of.c-added-of_irq-include.patch

Next step is to apply the kernel-con�guration. To use the pro vided con�g you can execute
the following commands:

cp ../ml507_mb_usb_kernel.con�g .con�g

make ARCH=microblaze oldcon�g

You must also provide the DTS-File. For this, copy the created DTS-File (or the provided
one) into the sub-folder arch/microblaze/boot/dts by executing:

cp ../ml507_mb_usb.dts arch/microblaze/boot/dts/ml507_mb_usb.dts

Now you are ready to build the Linux kernel by using the so-called method simpleImage.
Here you have to provide the name of the DTS-File to use. For example:

make ARCH=microblaze CROSS_COMPILE=microblaze-xilinx-linux-gnu- sim-
pleImage.ml507_mb_usb -j8

uses the DTS-File ml507_mb_usb.dts from arch/microblaze/boot/dts.

Once you have all the binaries needed you can create the ACE-� le and copy it onto a CF-
card. To create the ACE-�le you need the bit�le and the kernel image. To get a correct ACE-
File for big-endian (which is used for PLB architectures) you have to follow a workaround:
Check the content of the �le generate_ace.opt as in Listing 16:

Technical Brief 20141216 MissingLinkElectronics.com Page 16

XPS USB Host Controller

Listing 16: Content of �le generate_ace.opt
1 - jprog
2 -board ml507
3 - target mdm
4 -hw ../.. / implementat ion / system .bit
5 -elf arch / microblaze /boot / simpleImage . ml507_mb_usb
6 -debugdevice devicenr 1 cpunr 1 cpu_version microblaze_v7 2
7 -ace ../ ml507_mb_usb_ace .ace

Here hw is the bit�le, elf is the kernel image and ace is the out put-�le. The debugdevice
must be set to the microblaze_v72 to force creation of a big-endian ACE-File.

This �le gives all the information to the script which create s the ACE-File. To run creation
execute:

xmd -tcl $XILINX_EDK/data/xmd/genace.tcl -opt generate_ace.opt

For the RootFS we suggest the default con�guration of Busybo x version 1.22 which can be
downloaded from the Xilinx Homepage [13]. For more information please refer to the Xilinx
Wiki page [14].

3.1.3 CF-Card Boot Image

The �nal step is to prepare the CF-card for the ML507 board. To do this you need a CF-
card and a card reader on your local pc. The CF-card has to be partitioned and formatted
as follows:

Partition 1: 100MB FAT16

Partition 2: 500MB EXT3 (or rest of space left)

To partition the CF-card use fdisk. Execute (you have to be root):

fdisk /dev/sd<X>

In fdisk �rst delete all partitions if there are any by typing [d] and selecting the partition
number, until the device is empty. Then create the �rst parti tion as primary partition by
typing [n] [p] [1] [return] +100M [return]. Create the second partition by typing [n] [p] [2]
[return] [return]. Type [p] and review the partitions. If it is okay write the new table by typing
[w].

The next step is to create the �le-systems. For this use mkfs b y executing (with root
rights):

mkfs.fat -F 16 /dev/sd<X>1

mkfs.ext3 /dev/sd<X>2

Technical Brief 20141216 MissingLinkElectronics.com Page 17

XPS USB Host Controller

Now you can copy the �les onto the CF-card. Copy all the data fr om the provided cf-
card_bootpartition.tar.gz to the �rst partition. Replace the �le ML50X/cfg0/v200.ace on the
�rst partition with the ACE-File created.

Copy all contents from the provided cfcard_rootfs.tar.gz to the second partition.

3.1.4 ML507 Board Settings

The ML507 board features a Virtex 5 XC5VFX70T FPGA device. Besides the ML507 board
you will need an add-on board with an ULPI PHY compatible with the XPS_USB_HOST
Controller IP Core. In our example we use an MLE-PHY board with four USB3300 phys
and plug it to the ML507 board as shown in Figure 8.

Figure 8: ML507 board with MLE/-PHY board

Any pre-settings on the ML507 board have to be done before starting:

• User selectable I/O voltage: select 3,3V on J20
(next to the power jack).

• Con�guration address and mode DIP switches (SW3): 0 0 0 1 0 1 0 1
(Figure 9(a)).

• Con�guration of clocking options (SW6 on back plane): 1 0 1 0 1 0 1 0
(Figure 9(b)).

• Connect the power-supply to the board.

Technical Brief 20141216 MissingLinkElectronics.com Page 18

XPS USB Host Controller

• Insert the prepared CF-card into the card-slot.

(a) SW3 (b) SW6

Figure 9: Pre-settings on the ML507 board

Please refer to the Xilinx User Guide [11] for more details of the board.

3.1.5 Starting Up

Once all settings are applied, connect the COM1 of the ML507 board to your workstation
and open a terminal (for example, you can use minicom and connect to /dev/ttyUSB0 with
the settings 115200 8N1). Then switch on the board via SW1. The Linux system will boot
while printing boot messages into the terminal. The entire boot phase may take about
45 seconds, then the XPS_USB_Host Controller Linux Reference Design system is up and
running.

3.2 About the Design

3.2.1 Design Components

The XPS_USB_Host Controller Linux Reference Design has been created using Xilinx
EDK XPS 14.7. It is a standard Base System Builder (BSB) project with additional XPS_USB_HOST
Controller IP Core. Table 2 lists the inserted components of the design example. Any fur-
ther details are listed below.

MicroBlaze :
One MicroBlaze processor microblaze_0 is inserted with a system clock frequency of
100 MHz.

xps_uartlite :
The RS232_Uart_1 is adjusted for 115200 baud, 8 data bits, no parity, and 1 stop bit
(115200 8N1).

plb_v46 :
mb_plb is the PLB of the MicroBlaze for the common slave components and is running

Technical Brief 20141216 MissingLinkElectronics.com Page 19

XPS USB Host Controller

Table 2: Overview over components of the design example

Component INSTANCE HW_VER BADSEADDR

microblaze microblaze_0 8.50.c 0x50000000
plb_v46 mb_plb 1.05.a
lmb_v10 ilmb 2.00.b
lmb_v10 dlmb 2.00.b
lmb_bram_if_cntlr dlmb_cntlr 3.10.c 0x00000000
lmb_bram_if_cntlr ilmb_cntlr 3.10.c 0x00000000
bram_block lmb_bram 1.00.a
xps_uartlite RS232_Uart_1 1.02.a 0x84000000
xps_ethernetlite Ethernet_MAC 4.00.a 0x81000000
mpmc DDR2_SDRAM 6.06.a 0x50000000
xps_sysace SysACE_CompactFlash 1.01.a 0x83600000
xps_timer xps_timer_0 1.02.a 0x83c00000
clock_generator clock_generator_0 4.03.a
mdm mdm_0 2.10.a 0x84400000
proc_sys_reset proc_sys_reset_0 3.00.a
xps_intc xps_intc_0 2.01.a 0x81800000
plb_v46 plb_v46_0 1.05.a
xps_usb_host xps_usb_host_0 2.00.a 0x85600000

at 100 MHz. plb_v46_0 is the PLB of the XPS_USB_HOST Controller IP Core running at
100 MHz, too.

xps_usb_host :
xps_usb_host_0 is the instance of the XPS_USB_HOST Controller IP Core. It is included
in version 2.00.a with enabled full-speed mode. This Core supports the two speed modes
high-speed and full-speed. The system clock has a frequency of 60 MHz on ULPI_CLK.
Inputs, outputs and control signals of the XPS_USB_HOST Controller IP Core have to be
constrained with special timing constraints.

3.2.2 I/O-Standards for the ML507 board

Listing 17 shows the I/O-standards for the ML507 board.

Listing 17: I/O-standards for the ML507 board
1 Net xps_usb_host_0_ULPI_Clock_pin IOSTANDARD = LVCMOS33;
2 Net xps_usb_host_0_USB_PHY_Reset_pin IOSTANDARD = LVCMOS33 ;
3 Net xps_usb_host_0_ULPI_Dir_pin IOSTANDARD = LVCMOS33 ;
4 Net xps_usb_host_0_ULPI_Nxt_pin IOSTANDARD = LVCMOS33 ;
5 Net xps_usb_host_0_ULPI_Stp_pin IOSTANDARD = LVCMOS33 ;
6 Net xps_usb_host_0_ULPI_Data_pin <7> IOSTANDARD = LVCMOS33 ;
7 Net xps_usb_host_0_ULPI_Data_pin <6> IOSTANDARD = LVCMOS33 ;
8 Net xps_usb_host_0_ULPI_Data_pin <5> IOSTANDARD = LVCMOS33 ;
9 Net xps_usb_host_0_ULPI_Data_pin <4> IOSTANDARD = LVCMOS33 ;

10 Net xps_usb_host_0_ULPI_Data_pin <3> IOSTANDARD = LVCMOS33 ;
11 Net xps_usb_host_0_ULPI_Data_pin <2> IOSTANDARD = LVCMOS33 ;

Technical Brief 20141216 MissingLinkElectronics.com Page 20

XPS USB Host Controller

12 Net xps_usb_host_0_ULPI_Data_pin <1> IOSTANDARD = LVCMOS33 ;
13 Net xps_usb_host_0_ULPI_Data_pin <0> IOSTANDARD = LVCMOS33 ;

3.2.3 Pin-out for the ML507 board

An extension board with ULPI USB PHY, for example a USB3300 high-speed USB transceiver,
is needed to use the XPS_USB_HOST Controller IP Core on the ML507 board. Hereafter
the pin-outs for two PHY boards are listed.

The MLE-PHY has been designed by MLE and can be attached to the ML507 board as
shown in Figure 8. Listing 18 shows the pin-out for the MLE-design ULPI PHY board.

Listing 18: Pin-out for the ML507 board with MLE-PHY
1 NET xps_usb_host_0_ULPI_Clock_pin LOC =" H33 ";
2 NET xps_usb_host_0_ULPI_Data_pin <0> LOC =" F34 ";
3 NET xps_usb_host_0_ULPI_Data_pin <1> LOC =" H34 ";
4 NET xps_usb_host_0_ULPI_Data_pin <2> LOC =" G33 ";
5 NET xps_usb_host_0_ULPI_Data_pin <3> LOC =" G32 ";
6 NET xps_usb_host_0_ULPI_Data_pin <4> LOC =" H32 ";
7 NET xps_usb_host_0_ULPI_Data_pin <5> LOC =" J32 ";
8 NET xps_usb_host_0_ULPI_Data_pin <6> LOC =" J34 ";
9 NET xps_usb_host_0_ULPI_Data_pin <7> LOC =" L33 ";

10 NET xps_usb_host_0_ULPI_Stp_pin LOC =" M32 ";
11 NET xps_usb_host_0_ULPI_Dir_pin LOC =" P34 ";
12 NET xps_usb_host_0_ULPI_Nxt_pin LOC =" N34 ";
13 NET xps_usb_host_0_USB_PHY_Reset_pin LOC =" AA34 ";

The manufacturer Waveshare sells an "USB3300 USB HS Board". This Waveshare-PHY
needs to be connected via manual wiring �tted e.g. to the pin- out of Listing 19.

Listing 19: Pin-out for the ML507 board with Waveshare-PHY "USB3300 USB HS Board"
1 NET xps_usb_host_0_ULPI_Clock_pin LOC =" AD32 ";
2 NET xps_usb_host_0_ULPI_Data_pin <0> LOC =" AA34 ";
3 NET xps_usb_host_0_ULPI_Data_pin <1> LOC =" N34 ";
4 NET xps_usb_host_0_ULPI_Data_pin <2> LOC =" P34 ";
5 NET xps_usb_host_0_ULPI_Data_pin <3> LOC =" M32 ";
6 NET xps_usb_host_0_ULPI_Data_pin <4> LOC =" L33 ";
7 NET xps_usb_host_0_ULPI_Data_pin <5> LOC =" J34 ";
8 NET xps_usb_host_0_ULPI_Data_pin <6> LOC =" J32 ";
9 NET xps_usb_host_0_ULPI_Data_pin <7> LOC =" H32 ";

10 NET xps_usb_host_0_ULPI_Stp_pin LOC =" AH34 ";
11 NET xps_usb_host_0_ULPI_Dir_pin LOC =" Y32 ";
12 NET xps_usb_host_0_ULPI_Nxt_pin LOC =" W32 ";
13 NET xps_usb_host_0_USB_PHY_Reset_pin LOC =" Y34 ";

3.2.4 Software / Linux / Driver

The Linux kernel of the XPS_USB_Host Controller Linux Reference Design is Version 3.15
from Xilinx (tag: xilinx-v2013.4) [12]. In this kernel version the driver for the XPS_USB_HOST
Controller IP Core is already included. In the con�guration for the kernel this driver is acti-
vated. This kernel has been compiled with the tool-chain from Xilinx.

Technical Brief 20141216 MissingLinkElectronics.com Page 21

XPS USB Host Controller

The Device-Tree has an entry for the XPS_USB_HOST Controller IP Core.

The RootFS of the XPS_USB_Host Controller Linux Reference Design contains Busybox
version 1.22 which can be downloaded from Xilinx Homepage [13]. For more information
please refer to the Xilinx Wiki page [14].

Technical Brief 20141216 MissingLinkElectronics.com Page 22

XPS USB Host Controller

4 Designing with AXI under Vivado

The XPS_USB_HOST Controller IP Core in its versions 2.0 or earlier is PLB-based. This
restricts the use of XPS_USB_HOST Controller IP Core to older versions of the Xilinx tool-
chain and, thereby, to particular FPGA device families as shown below. MLE is actively
working on an AXI-based version of the XPS_USB_HOST Controller IP Core. Please
contact us for more information.

The Processor Local Bus (PLB) is a legacy FPGA-internal bus technology. The Advanced
eXtensible Interface (AXI) is a modern Network-on-Chip (NoC) and available in the three
varieties AXI4 for highly ef�cient data exchange, AXI4-Lite is the simpli�ed version thereto
and AXI4-Stream for data streams. Instead of a shared bus the AXI NoC uses separated
point to point connections via AXI Interconnect IPs.

PLB is not supported by Xilinx new tool-chain Vivado. Table 3 lists the Xilinx tool-chain
versions with the default and supported kinds of network for MicroBlaze.

Table 3: MicroBlaze with AXI & PLB in Xilinx tool-chain versions

Xilinx version default supported

ISE 11.x PLB PLB only
ISE 12.x PLB PLB only
ISE 13.x AXI both, AXI & PLB
ISE 14.x AXI both, AXI & PLB
Vivado AXI AXI only

Petalinux supports PLB until version 2013.04. Petalinux 2013.10 and future versions do
not support PLB but only AXI.

Technical Brief 20141216 MissingLinkElectronics.com Page 23

XPS USB Host Controller

5 Analysis and Testing

The following tests have been done by MLE. You can use them as a guide for diagnosing
your XPS_USB_HOST Controller IP Core based FPGA design. Or when you evaluate the
XPS_USB_Host Controller Linux Reference Design which uses the ML507 plus the MLE-
PHY board. Other ULPI USB phys than the USB3300 PHY are supported, but have not
been tested, yet.

5.1 Testing Speed Modes

The functionality of the XPS_USB_HOST Controller IP Core in the speed modes of USB
speci�cation [1] is described in this section.

Low-Speed:
The low-speed mode is not supported by the XPS_USB_HOST Controller IP Core.

Full-Speed:
The full-speed mode has to be enabled when implementing a design as could be seen in
Figure 2 and Listing 1.

High-Speed:
XPS_USB_HOST Controller IP Core is designed for the high-speed mode of USB 2.0, so
this is the best speed mode to use the core.

5.2 Testing USB Device Connectivity

The following USB devices were sorted by the speed modes and tested by MLE with the
listed results. Table 4 shows an overview.

Table 4: versions of XPS_USB_HOST Controller IP Core and license options

device under test speed mode result

Keyboard low-speed not supported
Mouse low-speed not supported

Wireless Mouse full-speed fully functional 1

Webcam full-speed fully functional 1

Headset full-speed fully functional 1

PL2302 Serial Port full-speed fully functional 1

Hub high-speed fully functional
Flash Drive high-speed fully functional

Card Reader high-speed fully functional

1Full-speed devices are fully functional with enabled full-speed mode in the XPS_USB_HOST Controller IP
Core only.

Technical Brief 20141216 MissingLinkElectronics.com Page 24

XPS USB Host Controller

5.2.1 USB Low-Speed Devices

Low-speed is not supported by the XPS_USB_HOST Controller IP Core and for that reason
low-speed devices will not work. However, to help you diagnose such behavior please refer
to the following USB low-speed device tests:

Keyboard: Logitech K120, USB 2.0, �rmware 64.0

Mouse: Logitech M90, USB 2.0, �rmware 63.00 / 54.00

If e.g. the keyboard gets directly connected to the PHY, dmesg shows the error message
of Listing 20.

Listing 20: dmesg message when the keyboard is directly connected to the PHY
1 hub 1 -0:1.0: Cannot enable port 1. Maybe the USB cable is bad ?
2 xilinx -of -ehci c1600000 .usb : port 1 cannot be enabled
3 xilinx -of -ehci c1600000 .usb : Maybe your device is not a hig h speed device ?
4 xilinx -of -ehci c1600000 .usb : The USB host control ler does not support ful l speed nor

low speed devics
5 xilinx -of -ehci c1600000 .usb : You can reconfigure the host control ler to have ful l

speed support
6 hub 1 -0:1.0: unable to enumerate USB device on port 1

Even with usage of a hub an error occurs and the dmesg message looks like Listing 21.

Listing 21: dmesg message when the keyboard is connected to the PHY via a hub
1 usb 1 -1.3: new low speed USB device using xilinx -of -ehci and address 15
2 usb 1 -1.3: device descriptor read /64 , error -32
3 usb 1 -1.3: device descriptor read /64 , error -32
4 usb 1 -1.3: new low speed USB device using xilinx -of -ehci and address 16
5 usb 1 -1.3: device descriptor read /64 , error -32
6 usb 1 -1.3: device descriptor read /64 , error -32
7 usb 1 -1.3: new low speed USB device using xilinx -of -ehci and address 17
8 usb 1 -1.3: device not accepting address 17, error -32
9 usb 1 -1.3: new low speed USB device using xilinx -of -ehci and address 18

10 usb 1 -1.3: device not accepting address 18, error -32
11 hub 1 -1:1.0: unable to enumerate USB device on port 3

5.2.2 USB Full-Speed Devices

Full-speed devices are only supported by the XPS_USB_HOST Controller IP Core if the
full-speed mode has been enabled. The following full-speed devices were tested:

Wireless Mouse: HP A0X35AA, USB 2.0, �rmware 3.20

Webcam: Logitech Webcam Pro 9000, USB 2.0, �rmware 0.09

Headset: ASUS HS-W1000 Wireless Audio, USB 1.10, �rmware 1.00

PL2302 Serial Port: Proli�c Technology, USB 1.10, �rmware 3.00

Connecting e.g. the wireless mouse to the XPS_USB_HOST Controller IP Core without
full-speed mode results in the error message of Listing 22.

Technical Brief 20141216 MissingLinkElectronics.com Page 25

XPS USB Host Controller

Listing 22: dmesg message when the wireless mouse is directly connected to the PHY with disabled
full-speed mode in the XPS_USB_HOST Controller IP Core

1 usb 1-1: new high -speed USB device number 2 using xilinx -of - ehci
2 usb 1-1: Using ep0 maxpacket : 8
3 usb 1-1: device descriptor read /all , error 8
4 usb 1-1: new high -speed USB device number 3 using xilinx -of - ehci
5 usb 1-1: Using ep0 maxpacket : 8
6 usb 1-1: device descriptor read /all , error 8
7 usb 1-1: new high -speed USB device number 4 using xilinx -of - ehci
8 usb 1-1: Using ep0 maxpacket : 8
9 usb 1-1: device descriptor read /all , error 8

10 usb 1-1: new high -speed USB device number 5 using xilinx -of - ehci
11 usb 1-1: Using ep0 maxpacket : 8
12 usb 1-1: device descriptor read /all , error 8
13 xilinx -of -ehci 85600000. usb : port 1 cannot be enabled
14 xilinx -of -ehci 85600000. usb : Maybe your device is not a hig h speed device ?
15 xilinx -of -ehci 85600000. usb : The USB host control ler does not support ful l speed nor

low speed devices
16 xilinx -of -ehci 85600000. usb : You can reconfigure the host control ler to have ful l

speed support
17 hub 1 -0:1.0: unable to enumerate USB device on port 1

If the wireless mouse is connected to the PHY via a high-speed hub, the error message of
Listing 23 can be seen.

Listing 23: dmesg message when the wireless mouse is directly connected to the PHY with disabled
full-speed mode in the XPS_USB_HOST Controller IP Core

1 usb 1 -1.4: new full - speed USB device number 7 using xilinx -o f - ehci
2 usb 1 -1.4: device descriptor read /64 , error -32
3 usb 1 -1.4: device descriptor read /64 , error -32
4 usb 1 -1.4: new full - speed USB device number 8 using xilinx -o f - ehci
5 usb 1 -1.4: device descriptor read /64 , error -32
6 usb 1 -1.4: device descriptor read /64 , error -32
7 usb 1 -1.4: new full - speed USB device number 9 using xilinx -o f - ehci
8 usb 1 -1.4: device not accepting address 9, error -32
9 usb 1 -1.4: new full - speed USB device number 10 using xilinx - of -ehci

10 usb 1 -1.4: device not accepting address 10, error -32
11 hub 1 -1:1.0: unable to enumerate USB device on port 4

5.2.3 USB High-Speed Devices

High-speed devices are fully functional with the XPS_USB_HOST Controller IP Core. The
following high-speed devices were tested:

Hub: SKYMASTER 4-Port hub, USB 2.0, �rmware 7.02

Flash Drive: CEDA DATE 13, USB 2.0, �rmware 1.00

Card Reader: LogiLink USB 2.0 all-in-one card reader, USB 2.0, �rmware 1. 00

Technical Brief 20141216 MissingLinkElectronics.com Page 26

XPS USB Host Controller

5.3 Diagnosing the Evaluation License Time-bomb

The evaluation versions of the XPS_USB_HOST Controller IP Core comprise a time-bomb
that expire after a runtime of eight hours. Listing 24 shows the output message of this
event.

Listing 24: dmesg message after impact of time-bomb
1 [28824.806005] usb 2 -1: USB disconnect , address 2
2 [28824.810000] sd 0:0:0:0: Device off l ined - not ready afte r error recovery

After that event the Linux system will be still running, but the XPS_USB_HOST Controller
IP Core will be of�ine. This means that the IP core will not rea ct on any request and switch
off the power enable to the USB PHY.

Technical Brief 20141216 MissingLinkElectronics.com Page 27

XPS USB Host Controller

References

[1] USB Implementers Forum:
Universal Serial Speci�cation Revision 2.0
online, October 2014
http://www.usb.org/developers/docs/usb20_docs/

[2] Missing Link Electronics:
XPS USB 2.0 EHCI Host Controller
online, October 2014
http://www.missinglinkelectronics.com/mle/index.php /
menu-products/menu-usb-ehci

[3] Xilinx datasheet DS734:
XPS USB Host Controller (v1.01a)
online, October 2014
http://www.missinglinkelectronics.com/www/files/xps _usb_host.pdf

[4] Xilinx Wiki:
USB Host System Setup
online, October 2014
http://www.wiki.xilinx.com/USB+Host+System+Setup

[5] Xilinx Wiki:
USB Host Controller Driver
online, October 2014
http://www.wiki.xilinx.com/USB+Host+Controller+Driv er

[6] Waveshare Electronics:
USB3300 USB HS Board
online, December 2014
http://www.wvshare.com/product/USB3300-USB-HS-Board .htm

[7] Missing Link Electronics:
Missing Link Electronics, Inc. (MLE)
online, October 2014
http://www.MLEcorp.com

[8] Xilinx User Guide UG798:
Xilinx Design Tools: Installation and Licensing Guide
online, October 2014
http://www.xilinx.com/support/documentation/sw_manu als/
xilinx2012_4/iil.pdf

[9] Microchip Technology Inc, data sheet to USB3300:
Hi-Speed USB Host, Device or OTG PHY with ULPI Low Pin Interface
online, October 2014
http://ww1.microchip.com/downloads/en/DeviceDoc/000 01783A.pdf

Technical Brief 20141216 MissingLinkElectronics.com Page 28

XPS USB Host Controller

[10] Xilinx:
ML507 Evaluation Platform Documentation
online, October 2014
http://www.xilinx.com/products/boards/ml507/docs.ht m

[11] Xilinx User Guide:
ML505/ML506/ML507 EvaluationPlatform
online, October 2014
http://www.xilinx.com/support/documentation/boards_ and_kits/
ug347.pdf

[12] GitHub:
The of�cial Linux kernel from Xilinx, tag: xilinx-v2013.4
online, October 2014
https://github.com/Xilinx/linux-xlnx/tree/xilinx-v2 013.4

[13] Xilinx Wiki:
download rootfs for MicroBlaze
online, October 2014
www.wiki.xilinx.com/file/view/microblaze_complete.c pio.gz/
419243588/microblaze_complete.cpio.gz

[14] Xilinx Wiki:
Build and Modify a Rootfs
online, October 2014
http://www.wiki.xilinx.com/Build+and+Modify+a+Rootf s

Technical Brief 20141216 MissingLinkElectronics.com Page 29

	USB Backgrounder
	Speed Modes of USB
	Bus Topology of USB
	Transfer Types of USB
	USB Hot Plug
	Further Documentation

	The XPS_USB_HOST Controller IP Core
	Supported Features
	Supported Speed Modes
	Revisions and Deliverables
	License Management
	Timing Closure

	The XPS_USB_Host Controller Linux Reference Design
	Getting Started
	Hardware
	Linux
	CF-Card Boot Image
	ML507 Board Settings
	Starting Up

	About the Design
	Design Components
	I/O-Standards for the ML507 board
	Pin-out for the ML507 board
	Software / Linux / Driver

	Designing with AXI under Vivado

