
Design Choices for FPGA based SoCs When Adding a SATA Storage

Lorenz Kolb, Endric Schubert

Missing Link Electronics

Rudi Usselmann

ASICS World Services

Abstract

With decreasing cost of Solid-State Disks (SSD), data acquisition and logging, test and measurement, and other modern

embedded systems applications can be enhanced with fast and cost-efficient off-the-shelf data storage. This paper discusses

how to add Serial ATA (SATA) storage capability to such embedded systems when utilizing modern programmable Systems-

on-Chip which combine Field-Programmable Gate-Array (FPGA) logic with powerful embedded dual-core CPUs running

Open Source GNU/Linux.

1 Introduction

A new class of programmable System-on-Chip devices

are the so-called Extensible Processing Platforms (EPP).

They exhibit a side-by-side integration of powerful Field-

Programmable Gate-Array (FPGA) logic and dual-core

ARM Cortex A9 CPUs in a single, low-cost device.

This enables embedded system designers to tightly couple

software-driven application with fast signal and data pro-

cessing in FPGA-logic. The ability to run within a feature-

rich Open Source GNU/Linux operating system environ-

ment reduces development costs and risks because one can

re-use proven, standard software functionality.

When it comes to data storage, for example for data log-

ging, test and measurement, etc, these EPP can deliver un-

paralleled price-to-performance ratios when combined with

modern off-the-shelf Solid-State Disks (SSD).

2 Serial ATA

Serial ATA (SATA) has become the new standard for mass

data storage interfaces. Harddisk drives are migrating to-

wards SATA and newer SSD are almost always SATA

based. Especially the combination of SATA and SSD offers

compact, high performance, and high capacity data access

and programmable systems can only benefit from this: Cus-

tomizable electronic testing systems or industrial, scientific

or medical systems now have a viable option for mass data

storage without the weight and mechanical restrictions of

harddisks.

The SATA Standard is defined by the Serial ATA Inter-

national Organization (SATA-IO) [3]. The first version,

SATA-I, delivered a serial link speed of 1.5 Gbits/second,

the second version, SATA-II, of 3 Gbits/second, and the cur-

rent standard, SATA-III, of 6 Gbits/second. Modern SSD

drives fully exploit SATA-III speed and effectively deliver

read/write speeds of over 500 MBytes/second.

SATA is basically a point-to-point connection between

a SATA host controller and a SATA device. As shown in

Fig. 1 multiple communication and processing layers are

involved for full SATA functionality:

Figure 1: Serial ATA Function Layers

• Phy layer - which delivers the electrical interface and

which nowadays can be fully implemented inside an

FPGA.

• Link layer - sends and receives data frames and takes

care of bit errors. In the SATAHost IP core this is built

from programmable logic gates.

• Transport layer - controls the read and write opera-

tion via so-called Frame Information Structure (FIS)

types and is also implemented from programmable

logic gates.

• Application layer - handles standard ATA commands

to the SATA device. An efficient implementation com-

bines hardware and software.

• Device layer - serves as a hardware abstraction layer

(HAL) to make SATA connected devices available to

user programs.

• User program layer - comprises program suites for op-

erating (and testing) SATA connected devices.

2.1 Phy layer

Modern FPGA devices feature so-called Multi-Gigabit

Transceivers (MGT) which are suitable for many different

high-speed serial protocols [4]. The SATA Host IP core

from ASICS World Services utilizes these MGT to imple-

ment high quality SATA functionality, i. e. the Phy layer

of the SATA Host IP core is completely done within the

FPGA. There is no need for external Phy components.

2.2 Link layer

The Link layer performs frame based transaction. It trans-

mits and receives control primitives to manage the flow of

frames. The Link layer creates a bridge between the Trans-

port layer and the Phy layer. It encapsulates data frames

in special symbols that indicate the beginning and end of

a frame and removes those symbols on the receiving side.

It also automatically asserts back pressure to the SATA

device by inserting special hold primitives to throttle the

transfers, and responds to back-pressure requests from the

device by stripping hold primitives and waiting for valid

data. Other responsibilities of the Link layer are to cal-

culate and verify cyclic redundancy checks (CRC) and to

scramble/descramble all transmitted data. Scrambling is an

important part of the Link layer as it dramatically reduces

Electro-Magnetic Interference (EMI).

2.3 Transport layer

Communication on the Transport layer is done via Frame

Information Structures (FIS). The SATA standard defines

this set of FIS types. Because this layer offers important

performance trade-offs, we will have a more detailed look

at the FIS flow between Host and Device for read and write

operations.

As illustrated in Figure 2 the host informs the device

about the current active operation via a Register FIS, which

holds a standard ATA command. When the device is ready

to transmit data it shall send one or more Data FIS and com-

plete the transaction via a Register FIS Device to Host.

Figure 2 shows the FIS flow between host and device for

a write DMA operation. Again the host informs the de-

vice of the operation via a Register FIS. When the device

Register

Register

Data

H
O

S
T

D
E

V
IC

E

Read DMA

Data

Data

Data

Register

Data

Data

Register

DMA Activate

DMA Activate

H
O

S
T

D
E

V
IC

E

Write DMA

Figure 2: FIS Flow between Host and Device during a DMA op-

eration

is ready to receive data it shall send a DMA Activate FIS

and the host will start transmitting a single data FIS. When

the device has processed this FIS and it still expects data it

shall send a DMA Activate FIS again. In case of an error or

a completed operation it shall complete the transaction via

a Register FIS Device to Host.

A new feature introduced with SATA is the so-called

“First Party DMA” (FPDMA). This transfers some control

over the DMA engine to the device and thus enables the de-

vice for caching a list of commands and reordering these

for optimized performance – so called “Native Command

Queueing”. New ATA commands are used for First Party

DMA transfers. As these commands are not necessarily in-

stantaniously completed by the device, but rather queued,

the FIS flow is a bit different for this mode of operation.

The flow for a Read FPDMA Queued command is shown

on the left hand side of Figure 3.

Register (TAG=1, Busy=1)

DMA SETUP (TAG=4)

H
O

S
T

D
E

V
IC

E

Read FPDMA Queued

Data

Register (TAG=4,Busy=1)

Set Device Bits

Data

Data

Register (Busy=0)

DMA SETUP (TAG=1)

Data

Set Device Bits

Register (Busy=0)

Register (TAG=1, Busy=1)

DMA SETUP (TAG=4)

H
O

S
T

D
E

V
IC

E

Write FPDMA Queued

Data

Register (TAG=4, Busy=1)

Set Device Bits

Register (Busy=0)

DMA SETUP (TAG=1)

DMA Activate

Data

DMA Activate

Register (Busy=0)

Set Device Bits

Figure 3: FIS Flow between Host and Device during First Party

DMA Queued Operation

After receiving a Register FIS from the host the device

queues the command and answers with a Register FIS to

clear the busy field. Thus the host can send the next com-

mand. Each not yet completed command has a unique tag

set to distinguish them. Each new command is added to the

queue of the device and a scheduler in the device selects the

command to be processed next. To process a command the

device sends a DMA Setup FIS to the host with the tag field

set accordingly. The DMA engine of the host then selects

the scatterlist which belongs to the particular command and

processes the data. To complete the transfer the device shall

send a Set Device Bits FIS Device to Host.

As shown in Figure 3 the Write FPDMA Queued com-

mand is processed in a similar manner, but as in the non

FPDMA mode again with a “ping-pong” of DMA Activate

and Data FIS types. For efficiency the SATA protocol al-

lows for an additional feature, the so-called “Auto Activa-

tion”, which will combine the first DMA Activate FIS into

the DMA Setup FIS. Obviously this feature is only relevant

for writes of smaller portions of data.

2.4 Application layer

Communication on the Application layer uses ATA com-

mands [2]. While a limited number of these commands

certainly can be implemented as a finite state machine in

FPGA hardware, a software implementation is much more

efficient and flexible. Here, the Open Source Linux kernel

provides a proven, standard implementation which almost

exactly follows the ATA Standard and is proven in over a

billion devices shipped.

The Linux ATA library, libATA, copes with more than

100 different ATA commands to communicate with ATA

devices. These commands include not only data transfers

but also provide functionality for S.M.A.R.T. (Self Mon-

itoring Analysis and Reporting Technology) and for SE-

CURITY features such as secure erase and device lock-

ing. The ability to utilize this code base, however, requires

extra work of implementing hardware-dependent software

in form of Linux device drivers as so-called Linux Kernel

Modules.

2.5 Device layer

GNU/Linux acts as a hardware abstraction layer between

the user programs and the SATA Host IP core. Like in any

other Linux based system, SATA devices are hidden behind

a block layer which serves as a backend for the ATA li-

brary. All, read, write, or management operations can now

perform on an abstract block device (/dev/sdX) without

any special knowledge of the underlying SATA device it-

self. Even better, certain optimizations such as data caching

and read-ahead transfers come with this software stack –

fully integrated.

At this point the UNIX/Linux philosophy is reached

which shields all devices via filesystems. Apart from

“raw” data access one also can utilize the many differ-

ent filesystems, for example, EXT2, EXT3, or XFS which

GNU/Linux readily supports. These provide a robust and

software developer friendly access.

2.6 User Program layer

When we say GNU/Linux we mean not just an operating

system kernel but also the plethora of intgrated and pre-

validated user space programs. Of particular interest are all

tools for filesystem manipulation and for SATA device ad-

ministration: Programs such as hdparm and smartctl give

low-level access to SATA devices attached to the systems

and can be used, for example, as a testbench or for per-

formance analysis. This is complemented by full-featured

Open Source test suites like bonnie++ and iometer.

Python scripting capablities and a C/C++ software devel-

opment flow now make it very efficient to implement user

programs and help focus on building the SATA-based appli-

cation rather than spending valuable resources on SATA in-

tegration and debugging work. And, having a known-good

environment also facilitates analysis during system archi-

tecture exploration.

2.7 Design Space Considerations

Today, all these SATA layers can efficiently be imple-

mented in Extensible Processing Platforms. However, when

it comes to implementing a complete, reliable and high-

performance SATA storage solution one must not ignore

certain design space considerations:

First, only Phy, Link, and some portions of the Transport

layer make sense to be implemented in programmable logic

hardware and, thus, are provided when buying an IP core.

Today, the decision whether to make or whether to buy

a SATA host controller functionality is obvious: Buy an

IP core. Very few design teams are capable to implement

a functioning SATA host controller for the cost of licensing

one.

Similarly, it makes little sense to spend significant time

and money in-house to integrate this IP core into a pro-

grammable System-on-Chip, to develop device drivers for

this core, and to implement application software for operat-

ing (and testing) this core. This is because the higher levels

of the Transport layer, the Applications layer, the Device

layer and the User Program layer are better to be imple-

mented in software and, thus, typically are not part of an

IP core delivery. This can create an unnecessary high bur-

den of IP core integration and adds to the hidden costs of an

IP core.

One of the reasons is that those higher layers depend on

the target system’s architecture which again depends on the

target system’s use case. Therefore, the second aspect often

overlooked is that components such as Scatter-Gather DMA

engines (which are hardware and software) must be imple-

mented, tested and integrated to deliver a complete solution

which ties together the IP core with the user programs.

3 Architectural Choices

In the following we will discuss design choices that allow

you to scale the performance of a SATA storage implemen-

tation. The two fundamental metrics behind are:

• bandwidth and

• IO processing

Bandwidth is typically measured in MBytes/second, and

especially for SSDs it makes sense to distinguish between

bandwidth for reading data from the SSD drive, and band-

width for writing data to the SSD drive. Today, most SSD

drives reach the theoretical limit of 6Gbits/second of the

SATA-III link and deliver 500MB/second read/write band-

width, or more.

IO processing is measured in “IO Operations per second”

(IOPS) for a defined blocksize of (typical) 4096 Bytes. To-

days SATA SSD drives can support 80,000 IOPS for reads

and 60,000 IOPS for write.

Reaching those performance values in an EPP-based pro-

grammable System-on-Chip is clearly possible, if one puts

together the right micro-architecture of hardware and soft-

ware components.

Both metrics, bandwidth and IOPS, significantly depend

on the type of Direct Memory Access (DMA) and on the

CPU’s ability to handle interrupts efficiently.

3.1 Importance of DMA Engines

With regards to DMA transfers, EPP can either use the

built-in DMA engine, or a dedicated DMA engine, opti-

mized towards the SATA IP core and implemented in the

FPGA logic.

The EPP built-in DMA engine is an eight-channel PL330

DMA controller [1]. It is implemented as a hard IP core

and, therefore, does not require any extra logic resources.

The built-in DMA engine does support Scatter-Gather

mode, but unfortunately the current Xilinx Linux kernel

driver lacks support for this functionality.

ıEven more, while being an eight-channel DMA con-

troller it could even be used for NCQ. The only interface,

however, to control the DMA engine is via an AXI slave

interface. So you end up writing an AXI master IP Core

anyhow, when you want to move control from software to

custom logic.

Even with Scatter-Gather, there is another caveat when

running an operating system (OS): How fast can the OS

find new (large enough) free pages to sustain the data rate.

This is mainly limited by the transfer size, the page size and

the maximum number of segments the Scatter-Gather DMA

engine supports.

When optimizing for SSD performance, the next bottle-

neck after resolving the scattered data bottleneck, are typi-

cally the IOPS. Once you can provide data fast enough for

every single transfer, our experimental results below clearly

demonstrate where the next performance bottleneck sits:

Now the disc is sending “back-pressure” because of internal

performance aspects due to the Flash memory access inside

an SSD.

Good news: SATA has implemented a mechanism to

counter that bottleneck, Native Command Queing (NCQ).

Assuming you have multiple transfers to do, you can queue

them up and the SSD selects the order of these accesses.

To really gain performance out of this feature, it needs to

be supported by the DMA engine. This is basically where

DMA engine and Storage Controller IP-Core need to work

hand in hand. The DMA engine knows about multiple

transfers, each of them identified by a Tag, the SSD is no-

tified about these transfers, reorders them and then requests

them by sending a DMA Setup for the next Tag in the queue

of the SSD. This is called Native Command Queueing. So

both DMA Engine and Storage Controller need to know

about the transfers, and thus need to be protocol specific

for maximum performance.

For a low performance mass storage system the PL330

DMA-controller might be the quickest way to get an initial

system up and running. Once this system needs more per-

formance, one can either go for implementing the Scatter-

Gather functionality or start using a custom DMA engine

in the programmable logic. By the moment when the per-

formance gain NCQ delivers is needed, one will, however,

end up using a highly optimized DMA engine in the pro-

grammable logic. Today, the obvious design choice for

SATA SSD performance is to integrate into the FPGA logic

an NCQ-capable DMA engine optimized for SATA SSDs,

such as the Performance DMA Engine from ASICS World

Services, for exaple.

3.2 Aspects of CPU Interrupt Handling

Even with high performance Scatter-Gather DMA engine

with NCQ support, implemented inside the FPGA logic,

reaching the performance values of a modern SSD re-

quires additional measures in the software domain. For data

throughput with larger transfer sizes the optimizations done

so far, will be sufficient. Once the transfer sizes become

small (4096 Byte or even less), however, you will find, that

the limiting factor will be the handling of interrupts gener-

ated by the storage controller.

Normally for every transfer, one interrupt is generated.

So for 80,000 IOPS, this translates to 80,000 Interrupts per

second. For a CPU running at 800 MHz, this gives you

10,000 instructions for saving the current state, switching

into the interrupt context, completing the transfer (includ-

ing error checking), restoring the state, and setting up the

next transfer. The tough timing this causes can be relaxed a

bit, by not using interrupts, but rather polling, to reduce the

overhead caused by the switching and latency intruduced by

the interrupt handling. When running the storage applica-

tion as a standalone software, this is a lot simpler than when

running inside the kernel of an operating system, such as an

embedded Linux.

To reduce the stress put on such a system, it is better,

to implement so-called Interrupt Coalescing (IC) function-

ality. IC works as follows: Instead of raising an interrupt

everytime a transfer is completed, an interrupt is only gener-

ated every other transfer (and multiple tags are then flagged

as completed). This can be implemented inside the FPGA

logic, by having a completion register bit per tag, a counter

for counting the number of completions, and a timer, for

generating a timeout (such that single transfers get com-

pleted as well).

4 Experimental Data

Based on the observations from the previous section and

measurements on comparable plaforms, we can expect the

following qualitative results. For a simple DMA engine,

implemented inside the programmable logic or in terms of

the PL330 with the standard driver, we will see low data

throughput, with increasing values when plotted over the

transfer size. There are basically two limiting factors here:

for small transfer sizes the interrupt handling and DMA

setup latencies will are the limiting factor and when run-

ning under an operating system, another limiting factor will

be caused by the lack of larger consecutive blocks of mem-

ory available from the memory management to satisfy the

simple DMA data transfers.

Figures 4 to 7 show an examplary plot of read and write

speeds for 4096 Byte transfers over various NCQ-table

lengths. In this case a “Simple DMA Engine”, described

above, is comparable to an NCQ-table length of 1.

To overcome the memory management bottleneck an OS

introduces Scatter-Gather functionality in the DMA engine

can ensure that even for large transfer sizes one setup for the

DMA engine is sufficient. This way no degradation in the

performance for large transfer sizes can be observed. For

large transfers the setup time of the DMA engine and the

completion time of a transfer shows less effect, thus allow-

ing for high bandwidth throughput of data.

To eliminate the remaining setup latencies and wait states

hardware support for FPDMA inside the DMA engine al-

lows for even better performance, by significantly increas-

ing the IOPS, as shown in the example in Figures 4 to 7 The

data in these plots were captured on a high end worksta-

tion to eliminate the bottleneck introduced by the interrupt

load, which can later be reduced by introducing interrupt

coalescing.

References

[1] Zynq-7000 All Programmable SoC, Technical Reference

Manual. Tech. rep., Xilinx, Inc., November 2012. Visited

on January 18th, 2013.

[2] INTERNATIONAL COMMITTEE FOR INFORMATION TECH-

NOLOGY STANDARDS. AT Attachment 8 - ATA/ATAPI Com-

mand Set, September 2008.

http://www.t13.org/.

[3] THE SERIAL ATA INTERNATIONAL ORGANIZATION. Serial

ata international organization.

http://www.sata-io.org/index.asp.

[4] XILINX, INC. Virtex-5 FPGA RocketIO GTX Transceiver

User Guide, October 2009.

http://www.xilinx.com/bvdocs/userguides/ug198.

pdf.

About

Missing Link Electronics (MLE) is an emerging technol-

ogy company headquartered in Silicon Valley with offices

in Germany. MLE is partner of leading electronic de-

vice and solution providers, enabling key innovators in

the automotive, industrial, test & measurement markets

to build better systems, faster. MLE’s mission is to de-

velop and market technology solutions for Embedded Sys-

tems Realization via pre-validated IP and expert applica-

tion support, and to combine off-the-shelf FPGA devices

with Open-Source Software for dependable Configurable

System platforms. Their expertise includes I/O connec-

tivity and acceleration of data communication protocols,

opening up FPGA technology for analog applications, in-

tegration and optimization of Linux and Android software

stacks on modern extensible processing architectures, Au-

tomotive and industrial control applications. http://www.

missinglinkelectronics.com

ASICS World Services was founded in 1999, immedi-

ately starting to offer semiconductor products and services.

Since then ASICS World Services has established a world

wide reputation for professional highest-quality IP cores

with flexible licensing at a low cost. An expanding cus-

tomer base is quickly promoting ASICS World services to

one of leading IP providers in the world. ASICSWorld Ser-

vices provides a broad line of general-purpose IP cores, in-

cluding a variety of USB related products such as USB 3.0

Device, USB 2.0 OTG IP cores as well as various others

such as SATA I/II/III Device and Host IP core, encryption

(AES), error correction (Reed Solomon), and many other

functions. http://www.asics.ws

ASICS World Service’s SATA Host IP core has been cer-

tified for Serial ATA Revision 3.0 compliance, for example,

on a Xilinx Virtex-6 FPGA by the UNH IOL SATA Con-

sortium in May 2010.

Figure 4: Impact of NCQ Depth on Processing Performance (read)

Figure 5: Impact of NCQ Depth on Processing Performance (write)

Figure 6: Impact of NCQ Depth on Bandwidth (read)

Figure 7: Impact of NCQ Depth on Bandwidth (write)

