
Multi-Core and Real-Time - Making It Work

Glenn Steiner
Sr. Manager, Xilinx, Inc.

Endric Schubert, Ph.D.
General Manager, Missing Link Electronics

ABSTRACT
The design of multi-channel real-time control systems is a
challenging combination of dealing with high software com-
plexity and strict requirements for timing behavior. We
demonstrate how such systems can benefit from advanced
hardware / software partitioning which maps certain real-
time functionality into dedicated hardware for parallel pro-
cessing while utilizing multi-core CPUs for the software.
This paper also discusses hardware / software co-design op-
tions to take advantage of a new class of compute devices
which integrate Application Specific Standard Processors
(ASSP) within programmable logic devices.

1. INTRODUCTION
The definition of Real-Time means that a system must re-
spond to an event within a fixed, predetermined time. This
becomes difficult when the response time is short and safety
relevant, for example in anti-lock braking systems, and/or
multiple events must be processed leading to multiple re-
sponses, each with a different timing requirement. Because
these so-called Real-Time Control Systems (RTC) must in-
tegrate computational and physical processes [2] their design
complexity is dominated by managing time and concurrency
in the computational part [3]. Examples are new automo-
tive applications such as telematic systems for cars which
bridge into the safety relevant domain, or next-generation
industrial control systems which integrate the control loop
with motor control and safety supervision.

Nowadays reasonably priced, high performance multi-core
processors are becoming more common. However, multi-core
processors, especially when running a high-level operating
systems such as Linux tend to be ineffective at providing
real-time performance. What makes an applications-class
multi-core processor great for performance makes it poor for
real time applications, in general: Multi-stage pipelines take
extra time to flush; memory-management units (MMUs) and
paging operating systems require Table-Walks, these tables
may not be residing in cache which increases the response

time; not all caches are lockable and locking wastes precious
cache space and decreases system performance.

Interrupt service architectures are optimized for multi-tasking
but not real-time behavior, vectorizing interrupt controllers
may not always be available. Additionally, Interrupt Service
Routines can fall out of cache. In short, while multi-core pro-
cessors come with the ability to save large amounts of state
information this takes compute time.

Field-Programmable Gate-Arrays (FPGA) can offer very in-
teresting design choices for such RTC: Dedicated hardware
co-processors for Asymmetric Multiprocessing (AMP) ar-
chitectures combined with programmable logic are enablers
for providing real-time performance with multi-core pro-
cessing systems. With a new class of devices which in-
tegrate Application-Specific Standard Processors into the
FPGA fabric not only a wide range of I/O standards are
directly supported, but they can also be used to implement
the demanding compute and real-time requirements.

However, to the system designer who is used to a very soft-
ware centric view (with limited concurrency to handle and
very different timing aspects to deal with) the architectural
choices can be very overwhelming.

Therefore, we will examine techniques for increasing real-
time capability in multi-core systems including the use of
coprocessors, Asymmetric Multiprocessing (AMP) in FPGA
programmable logic. This paper first presents the basics of
RTC including multi-channel Real-Time Control Systems.
We will then discuss methods for migrating certain real-time
functionality into dedicated co-processing hardware blocks.
We finally demonstrate how a new class of devices, so-called
extensible processing platforms, can offer efficient hardware
/ software co-design options.

2. BACKGROUND
Figure 1 shows an example of the building blocks of a basic
control system. The aspect of the physical system to be
controlled, which is a state variable like rotational speed,
temperature, flow, etc. can be seen on the right hand side.
This physical value is either directly measured by sensors or,
if this is not possible for some reason, calculated from other
sensors data, and thus obtained indirectly.

Once the value of the physical variable is known to the sys-
tem, it is compared to an externally given setpoint, which is



Figure 1: Basic Structure of a Multichannel Control

System

Figure 2: Architecture of CPU-Based Control Sys-

tem

the target value for this variable. This comparison is done by
computing the difference, the so called control deviation, be-
tween setpoint and current value of the state variable. The
control deviation is forwarded to a controller, which then
adjusts its outputs according to its inherent control strat-
egy to bring the system more closely to the target setpoint.
This output controls an actuator which influences the phys-
ical behavior of the system under control. In most systems
the setpoint is not fixed, but can be influenced by the user
of the system or some control software.

Also there may be multiple channels with different physical
values and different dynamic behavior to be controlled. This
is indicated by the stacked layers in Figure 1.

One challenge in designing a closed-loop control system is
the selection of the right control algorithm for the applica-
tion including the right set of parameters for this algorithm.
An extensive design exploration trying out different control
algorithms with different parameter sets and different speeds
of execution is crucial for finding the optimum solution.

2.1 Traditional Approach
Let’s first have a look on how to implement such a system us-
ing a microcontroller to implement a closed-loop Real-Time
Control System together with the necessary user application
in software. The basic layout of such a system is shown in
Figure 2.

As the microcontroller has to cope with both, the continuous
control and the user interaction, the software has to imple-
ment both parts. Being only capable of executing operations
sequentially, a microcontroller can only work on one task at
a time. Hence the inherently parallel problem — maintain-
ing certain target values while processing a user application
— has to be serialized first. This can be implemented by a
program structure as shown in Figure 3.

The calculation of the controller output has to happen quasi-

Figure 3: Flowchart of a CPU-Based Control Sys-

tem

Figure 4: Timing in an interrupt driven control ap-

plication

continuously, or at least on a very regular deterministic basis
in respect to timing. To achieve this, the complete control
algorithm including data acquisition and data output is done
in an interrupt service routine that is called regularly using
a timer interrupt. This timer interrupt divides the program
execution into time slices. In every time slice the control
algorithm has to be performed to acquire sensor measure-
ments, compute the next control value and propagate this
value to the output stage. When these tasks are finished,
the user application may use the processor for the rest of the
time slice. This concept is similar to time-triggered architec-
tures [1] and enables the design of deterministic, distributed
systems.

In Figure 4 a visualization is given on how the flowchart of
Figure 3 is handled in the microcontroller using interrupt
service routines (ISR) and ”normal” program execution.

The time slices must be large enough such that the entire
control algorithm is guaranteed to be completed within one
slice leaving enough computing time to execute the ”back-
ground” user application. Between the execution of con-
troller code and the user application there is some time
needed for the context switch. As the different portions
of the computations within each time slice are not exactly
the same in each cycle, additionally there has to be some
slack for worst case execution times to allow the algorithm
to ”breathe”. Depending on the chosen input and output
devices (mostly analog-to-digital and digital-to-analog con-



Figure 5: CPU-Based Multichannel Control System

verters) there may be some additional latency for data ac-
quisition and data output.

As accurate timing is crucial for the system to work, the first
step in the software development process is to decide on a
specific control algorithm and then to validate the imple-
mentation with respect to timing. Furthermore, some inter-
faces (universal asynchronous receiver/transmitter (UART),
Serial Peripheral Interface (SPI), Inter-Integrated Circuit
Bus (IIC), etc. may be supported directly by the micro-
controller, while others may need to be implemented via
software routines. Typically, this depends on the microcon-
troller used and can add to the design complexity.

Once the definition and implementation of the control algo-
rithms and the interface routines are done, it is necessary
to estimate the maximum worst-case execution time and,
thereby, to define the minimum cycle time. This cycle time
must be sufficiently long (including slack), as some back-
ground processing time must be available to run the user
application. Even though this user application is not as
time critical as the control algorithm, there must be enough
slack in processing time to achieve sufficient responsiveness
to the users input.

To the novice control system designer it may sound strange
to run the actual user application in the background while
having the timer interrupt routine doing a major part of the
work. Nevertheless one gets used to write software code in
such manner and – after some hands-on experience – most
likely gets such code to work after all.

However, it remains difficult to write such code and a lot of
caution is necessary to keep oversight over all the different
timing and execution layers. One popular pitfall, for exam-
ple, is the handling of nested interrupts which is necessary
as the software is processing the timing interrupt handler for
quite a bit of time. Even with a carefully designed system
and a powerful microcontroller it is sometimes not possible
to deliver a repetition rate for the closed-loop control faster
than in the low kHz range. This rate falls approximately
proportionally with the number of channels to be controlled.

2.2 Multichannel Control Systems
Very often, multiple channels must be controlled concur-
rently by one single control unit. Examples are multiple mo-
tors or certain lighting applications synchronized to multi-
axis motion control, etc. Such a multichannel closed-loop
Real-Time Control System is outlined in Figure 5.

Under normal circumstances it is difficult enough to serialize
a closed-loop control system for a single channel onto a se-

Figure 6: Concurrency in a Multichannel CPU-

Based Control System

quential microcontroller and maintain all the real-time con-
straints. But having multiple channels with different time
domains can make things really complicated. For example,
because of the different closed-loop control paths running at
different speeds, the time slices for the interrupts have to be
determined similar to a least common denominator in terms
of timing.

Shown in Figure 6 there is no linear straight forward soft-
ware flow anymore. Quite contrary, in every interrupt cycle
a decision has to be made which task needs to be computed
next and which task won’t need attention for the moment.
The calculation of the worst case execution time ends up
in a quite complex design challenge [3], e. g. using queuing
theory to be handled correctly. In addition to the increased
complexity in software development, this implementation in-
evitably introduces a considerable amount of jitter into each
of the individual closed-loop control channels.

3. PARALLELIZED COMPUTATION
Instead of serializing the entire control system, one can de-
couple and segregate the different tasks of the closed-loop
control system and run each task independent from each
other, concurrently in modular hardware. This is an obvi-
ous approach to get out of timing trouble.

In a true parallel system, the user application and the con-
trol loop computations can be independent from each other.
They may have to exchange data for current setpoints and
current system states, for example, but this does not require
any tight coupling. Instead it can happen asynchronously
through a defined interface such as message passing or shared
memory.

To the contrary, in the microcontroller-based approach these
two independent tasks become very tightly coupled and in-
fluence each other very strongly, because computation is
done sequentially with one task possibly blocking the re-
sources of the other task.

One solution to achieve such parallelism is to use Field Pro-
grammable Gate-Arrays (FPGA) and to implement each dif-
ferent task of the control system using a separate hardware
module which all run concurrently.



Figure 7: Architecture of an FPGA-Based Control

System

FPGAs can be seen as flexible hardware processing devices
that may be configured to execute almost any digital com-
putation. The possibilities range from simple glue logic to
advanced microprocessor designs that can be implemented
in FPGA logic. Due to their programmability and the flexi-
ble interconnection inside it is easy to maintain the inherent
parallelism of concurrent tasks. One application very well
suited for FPGA logic is to run finite state machines as they
are fundamental to many of the control problems described
above. Additionally, with the possibility to embed one (or
more!) microprocessors into an FPGA, sequential software
applications can also be handled efficiently by FPGA de-
vices.

During the design phase of a Real-Time Control System pro-
cessing can be divided into several tasks with well defined
interfaces to each other. In our example, the tasks of a
closed-loop Real-Time Control System (as shown in Figure 2
and Figure 3) are: data acquisition by reading the sensors,
signal conditioning, computation of the output control sig-
nal, data output to the actuator under control, application
software for user interaction.

The first four tasks can be implemented via independent
hardware modules realized directly in configurable FPGA
logic, while the application software stays on a sequential
processor which is now exclusively available to the user ap-
plication.

As you can see in Figure 7, four different tasks are now im-
plemented in hardware modules that run independently and
parallel within the FPGA. Even though there is of course
some synchronization and communication between the hard-
ware modules, this is done inside FPGA logic and not by a
sequential program as in Figure 2. As a result, each in-
dividual module can now be modified, copied or replaced
individually, without influencing the timing behavior of the
other modules.

Modularization also enhances design efficiency as it enables
concurrent engineering and early testing of the system. We
will now have a closer look at the different hardware modules
to build such a FPGA-based Real-Time Control System.

3.1 Data Acquisition Module
The Data Acquisition Module together with the connected
sensors is responsible for measuring the values of the sys-
tem’s physical state in each control cycle. It can be real-
ized as a simple state machine that acquires data from an
external sensor and stores it into a register over and over
again. The acquisition speed can be provided externally to

the module to synchronize the complete system.

Depending on the sensors in use it may be necessary to have
a certain protocol to access the sensor. For example, it is
very common to connect sensors via analog-to-digital con-
verters (ADC) which again support connectivity via SPI or
IIC interfaces. Optionally, very fast ADCs can be connected
via the FPGA’s LVDS interfaces. Sometimes special proto-
cols are required to interface to the sensors. Such protocols
can also be implemented directly within the FPGA logic,
so that the entire data acquisition is completely contained
within the Data Acquisition Module. The advantage is that
changing sensors has little or no impact on the rest of the
system. This significantly reduces the design risks for late
changes, for example, and is one of the key benefits of using
FPGAs for Real-Time Control System.

3.2 Signal Conditioning Module
The Signal Conditioning Module converts the acquired data
into an internal data format suitable for further processing.
Data formats can in many cases be based upon a numerical
fixed point representation which is very suitable for FPGA
logic. Depending on the measured physical values it may
also be necessary to perform certain data pre-processing be-
fore passing the value to the control algorithm module. Such
digital signal processing operations may include the compu-
tation of a derivative, for example to transform a rotational
speed of a wheel into a unidirectional speed over ground.
Other examples of data pre-processing include low-pass fil-
tering of the signal to cancel out distortions.

As we will explain in the next section, for most of those sig-
nal conditioning algorithms there exist pre-designed signal
processing hardware blocks that can be combined to quickly
build very complex pre-processing. Using those hardware
blocks, for each sensor input (or more precisely, for each
Data Acquisition Module) there can be a corresponding, in-
dependent Signal Conditioning Module.

3.3 Control Algorithm Module
A key portion is the implementation of a closed-loop control
algorithm. The control algorithm has to compute the next
output value for the controlled system depending on the
current sensor feedback and must be appropriate for the
given control system application behind.

The careful selection and design of the control algorithm
is critical to the quality of results and the robustness of
the Real-Time Control System. Now, using FPGA technol-
ogy, the different tasks are decoupled, independently imple-
mented in hardware modules and it becomes much easier to
explore different control algorithm strategies using different
configurations without interfering with the overall system’s
timing behavior.

There exist plenty of different control principles that are
more or less suited to a concrete problem and, normally, it
is left to the designer to deliver the best suited algorithm
for the specific problem. Even after deciding on an appro-
priate control algorithm, the design exploration is not fin-
ished, yet. For most of the algorithms there exist different
hardware implementation alternatives. Depending on the
Real-Time Control System’s cycle time, and utilizing the



Figure 8: Speed-Optimized Control Algorithm

Module for PID Control

Figure 9: Area-Optimized Control Algorithm Mod-

ule for PID Control

ability to trade-off between area and speed in an FPGA im-
plementation, an algorithm can be implemented either in a
parallel manner to achieve maximum computation speed or
in a more sequential fashion to save FPGA resources. As
an example, a comparison of different hardware implemen-
tations of the popular PID algorithm can be found in [6].

One - fast - implementation shown there is given in Figure 8
which needs only one single clock cycle to calculate the next
control output from the measured input. Compared to a
microprocessor-based implementation this is an incredibly
fast computation and, hence, can lead to incredibly short
cycle times. This aspect highlights yet another benefit of
FPGA-based RTC implementations: The control cycle times
can be sped-up by orders of magnitude.

Another – slower but area-optimized – implementation of
the same PID controller is shown in Figure 9.

3.4 Data Output Module
In its’ structure the Data Output Module is very similar to
the Data Acquisition Module, except that the Data Output
Module takes the output of the Control Algorithm Module,
possibly does data pre-processing and then drives the actua-
tors. Most often this is implemented as a direct pulse-width-
modulation or as a sigma-delta converter feeding a simple
power output stage like a full- or half-bridge driver. In other
system configurations, the data output may drive an exter-

nal digital-to-analog converter (DAC), connected via SPI or
similar protocols. Data pre-processing may be as simple as
clipping, to limit the output to a certain valid range. Or,
it may involve sophisticated signal processing implemented
in FPGA logic. Because of an FPGA’s superior process-
ing power digital signal processing algorithms which can be
implemented as a DSP program also fit most FPGA devices.

3.5 User Application Software
The last task to be implemented is the user application pro-
gram which interacts with the user and propagates high level
parameters from and to the control system. This portion is
best suited to be run as a software program on a micropro-
cessor. In contrast to the traditional microprocessor-based
approach, almost all time-critical and performance hungry
control and interface tasks are offloaded from the micropro-
cessor into dedicated hardware modules. Now, the micropro-
cessor is available almost exclusively to the user application
software.

The effect of such a system partitioning is that the closed-
loop control part and the real-world interface with hard real-
time requirements is now completely decoupled from the
user software which normally has far less stringent require-
ments – at least as far as real-time behavior is concerned.
The embedded software programmer can now focus on the
functionality of the software instead of struggling with com-
plex interrupt timings to force an inherently parallel problem
into a sequential compute scheme.

3.6 Scalability Aspects
Once a control algorithm is implemented for one single chan-
nel, it is easy to scale the Real-Time Control System to mul-
tiple channels. This is as easy as instantiating another set
of hardware modules for the Data Acquisition Module, the
Signal Conditioning Module, the Control Algorithm Mod-
ule and the Data Output Module. Assuming sufficient logic
resources in the FPGA, there is no impact on timing and
controller cycle time, regardless whether a single or several
channels must be controlled. As an example, a three-channel
FPGA-based Real-Time Control System is shown in Fig-
ure 10.

Often, a multichannel Real-Time Control System has very
different real-time requirements for each different channel.
Sometimes, the real-time constraints of each different chan-
nel are orders of magnitude apart from each other. In tradi-
tional microprocessor-based Real-Time Control System de-
sign this imposes a serious challenge as it either complicates
the interrupt service routines or requires that slower con-
trol channels must use the cycle time of the fastest channel.
However, in FPGA-based Real-Time Control System each
channel operates in parallel and, thus, can be optimized in-
dependently from the other channels.

Therefore, it is possible to implement the most timing con-
strained channel using a speed-optimized control loop while
less demanding channels use more resource optimized con-
trol loops.

Again, these – and other – optimizations become possible
because of the parallel processing capabilities of FPGA tech-
nology which allows to decouple each task of a closed-loop



Figure 10: FPGA-Based Multichannel Control System Using Hardware Replication

Real-Time Control System and to implement each task in
an independent hardware module.

4. EXTENSIBLE REAL-TIME PROCESSING
Processing solutions continue to converge: Because of Moore’s
Law it became feasible to integrate more and more func-
tionality into a digital circuit. As a result, specialized co-
processing and dedicated I/O was added to General Purpose
Processors (GPU) effectively creating the so-called Applica-
tion Specific Standard Processors (ASSP).

FPGAs have long been used as a companion for a GPU, to
implement special purpose processing and/or dedicated I/O
connectivity. With more FPGA resources available, even-
tually GPU were embedded inside the FPGA - initially as
resource efficient hard blocks, later as more flexible soft core
implementations. Not being limited by chip-to-chip inter-
faces between FPGA and GPU, this enabled a more flexible
and much tighter integration of GPUs with programmable
logic, introducing new co-processing concepts for hardware
/ software partitioning [4].

Recent advancements are a logical next step: Embedding
ASSPs into FPGAs. Integrating an ASSP as a hard block
into an FPGA has some significant effects: From a circuit
resource point-of-view it becomes very advantageous to in-
tegrate powerful multi-core CPUs, together with integrated
memory interfaces to support a variety of memory solutions:
DDR-2, DDR-3, LPDDR2, etc. Rich I/O interfaces can
be made available which normally would have to be imple-
mented in programmable logic. For example, specilized I/O
such as SPI, I2C, CAN, UART, GPIO, SDIO, USB, GigE are
readily available. These modern device concepts even sup-
port Analog-to-Digital conversion, such as the Agile Mixed
Signal I/O [5].

The result is a new class of processing devices which on one
hand offer a complete processing system with dedicated pe-
ripherals, defined memory map and which can boot soft-
ware without programmable logic involvement. Thereby,
these device support industry standard development tools
and processes and can run industry standard operating sys-
tems and application software.

On the other hand, these device provide a more flexible and
much tighter link between the software - running on the
ASSP - and the hardware - inside the programmable logic -
offering higher bandwidth and lower latency for hardware-
to-software and software-to-hardware communication. This
means that processing systems can easily be extended with
dedicated I/O and application specific co-processing.

5. CONCLUSION
We have shown techniques for migrating certain real-time
processing functionality from software to customized hard-
ware blocks. Many of those intensive data processing tasks
with tight timing constraints can run much better in the
parallel operating hardware domain than in the sequentially
running software domain. This puts the burden of process-
ing where it belongs and results in a more scalable imple-
mentation.

We have also shown how a new class of processing devices
supports this design methodology. Because these devices
integrate ASSPs inside FPGAs a more flexible and much
tighter communication between the hardware and the soft-
ware domain is possible, effectively meeting the require-
ments for implementing Real-Time Control System. Ar-
chitectures which utilize the afore mentioned techniques for
real-time processing in customized hardware blocks become
feasible and cost efficient.

6. REFERENCES
[1] H. K. et al. The time-triggered architecture. January

2003.

[2] E. A. Lee. Computing foundations and practice for
cyber-physical systems: A preliminary report.
UCB/EECS-2007-72, UC Berkeley, May 2007.

[3] P. Marwedel. Embedded and cyber-physical systems in
a nutshell. DAC.COM Knowledge Center Article, 2010.

[4] E. Schubert. Extend the powerpc instruction set for
complex-number arithmetic. Xilinx XCELL, 66, 2008.

[5] Xilinx, Inc. White Paper (WP369): Extensible
Processing Platform.

[6] W. Zhao, B. H. Kim, A. C. Larson, and R. M. Voyles.
Fpga implementation of closed-loop control system for
small-scale robot. In Proceedings of the 2005 Int.
Conference on Advanced Robotics, July 2005.


