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Every now and then designers face the need
to extend the lifespan of an existing embed-
ded system by adding more compute power
or additional inputs (or both). This is a job
for which having a programmable system
platform really helps.

In our case, we wanted to upgrade a net-
worked programmable system with secure
Internet connectivity. Secure Internet con-
nectivity requires encryption to run proto-
cols such as Secure Shell (SSH), Transport
Layer Security (TLS), Secure Sockets Layer
(SSL) or virtual private network (VPN).
This need for security is growing in pace
with the demand to connect all manner of
systems to the Internet to enable remote
administration and distributed control sys-
tems, for example.
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Because this field is still evolving and
standards are not yet set, costs are domi-
nated by nonrecurring-engineering fees.
Therefore, FPGA technology offers the
best value for implementations. 

Our system was built on top of the
Missing Link Electronics (MLE) “Soft”
Hardware Platform, where the flexible
I/Os of the FPGA enable connection to a
wide range of sensors and actuators. This
platform uses the programmable logic to
implement a system-on-chip with either
the MicroBlaze™ CPU or the PowerPC®

CPU at its heart. The CPU runs the MLE
Linux software stack for the operating sys-
tem and the user-space application soft-
ware. With the MicroBlaze or the
PowerPC as the main CPU, the system
was obviously not suitable for delivering
the required compute performance when
running embedded Linux plus strong
encryption on top. And changing the
physical hardware was not an option.

Instead, we utilized the power of pro-
grammable systems to migrate computa-
tions from the software domain to the
hardware side for system acceleration.

Coprocessing Hardware 
A programmable system is basically a
combination of one or more CPUs—run-
ning an operating system and application
software—plus an FPGA. The FPGA is
there as a flexible interface “adapter” and
as coprocessing hardware. You can make
programmable systems from separate
companion chips or integrate everything
into one single device. Depending on how
the FPGA device and the CPU are com-
municating with each other, you have dif-
ferent options in adjusting the system for
performance and functionality. 

One possibility is to add a peer proces-
sor, which synchronizes with the CPU via
memory-mapped status and control regis-
ters. Because running all communication
over the same system bus may quickly suf-
focate performance, you really want to
separate the data stream of the CPU from
the peer processor. This is easy to do by
using system-on-chip components such as
the Xilinx Central DMA or the Multiport
Memory Controller (MPMC). 

(FCM) readily supports that. The advantage
here is to free up the memory-to-system bus
by using a dedicated communication chan-
nel between the CPU and the coprocessor.
For the PowerPC this is the Auxiliary
Processing Unit (APU) and for MicroBlaze,
the Fast Simplex Link (FSL).

Alternatively, you can add a coprocessor,
in which case you effectively extend the
instruction set of the CPU by adding cus-
tom instructions (also called compiler-
known functions). This is, for example, the
case for floating-point units, and the Xilinx
technology of Fabric Coprocessor Modules
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Figure 1 – In an SCP transfer using the Valgrind tool, the AES 
encryption occupies two-thirds of the computations. 

XCEL LENCE IN COMMUNICAT IONS



AES: the Gold Standard
But how do you really accelerate encryp-
tion without a major system redesign?

For encryption, the Advanced
Encryption Standard (AES) is really the
de facto standard. With AES encryption,
the computations are irreducible by defi-
nition, bringing an embedded system

quickly to its performance limits. This is
clearly illustrated in Figure 1, which
shows the profiling results of a file trans-
fer with SCP (SSH session) using the
Valgrind analysis tool. In this case, the
AES encryption takes up two-thirds of
the computations.

AES-128, with a key and block length of
128 bits, utilizes many concurrent 8-byte
operations. AES is a block cipher and oper-
ates on fixed block sizes organized as a 4 x 4

array of bytes. We used a 128-bit block size,
which withstands all known attacks and is
even supposed to be more secure than the
192-bit and 256-bit versions.

With 128-bit AES, it takes 12 rounds,
each with several steps, to perform the
encryption and decryption. The first task is
to compute the round keys from the secret

key by means of the so-called key expan-
sion process. In every round, the plain text
is bit-wise XOR-ed with its own round key.
Then sub-byte, row-shifting and column-
mixing operations follow, and the round
key gets XOR-ed once again. 

The final round slightly differs, omitting
some steps. The encryption process per-
forms substitution using a so-called S-box,
which provides nonlinearity. We can arrange
it in a 16 x 16 x 8-bit matrix so that it gen-

erously fits into the common Xilinx BRAM
primitives. Several S-box instances speed up
the IP core and supply the core in place with
the data needed, without waiting on long-
lasting bus accesses to main memory. The
decryption occurs in a similar fashion, using
the same secret key, but in the opposite
direction and with a different S-box.

12 Times Faster
In encryption and decryption, most of the
operations are performed on either the rows
or the columns, leaving four operations that
can be calculated in parallel—a job well
suited for hardware. Thus, various hardware
implementations of AES are available from
different sources. To accelerate our system,
we took an AES core from the great and
fast-growing OpenCores.org repository
(http://opencores.org/project,avs_aes). We
removed the original bus interface, which
was targeted for another FPGA architecture,
and added an interface for the APU to con-
nect the AES core as an FCM coprocessor
to a PowerPC. We used a total of eight so-
called UDI commands to transfer data
between the PowerPC and the AES FCM.

The result of that work was very satisfy-
ing (see Figure 2). The hardware-accelerated
system ran 12 times faster than the original
implementation. It took 17.8 microsec-
onds to encrypt one single block using a
standalone PowerPC running at 300 MHz,
but only 1.5 μs to do this with an AES
FCM running at 150 MHz. For those who
are tempted to just switch to a faster CPU
for a speedup, our hardware-accelerated
speed of 1.5 μs outperformed a pure-soft-
ware implementation on an Intel Atom
1.6-GHz CPU, which took 2.7 μs. 

These results demonstrate the out-
standing potential of hardware accelera-
tion using FPGA technology. For details
of the analysis and exemplary code, con-
tact our applications team at http://www.
missinglinkelectronics.com. 
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Figure 2 – The hardware-accelerated system (green bar, center) ran faster 
than a standalone PowerPC or an Atom processor. 

In encryption and decryption, most of the operations are performed 
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