XAUI v12.1

LogiCORE IP Product Guide

Vivado Design Suite

PG053 November 19, 2014

Table of Contents

IP Facts

Chapter 1: Overview	
Additional Features	8
About the Core	8
Recommended Design Experience	8
Applications	9
Licensing and Ordering Information	10
Feedback	11
Chapter 2: Product Specification	
Standards Compliance	12
Performance	12
Resource Utilization	13
Verification	15
Port Descriptions	16
Register Space	34
Chapter 3: Designing with the Core	
Use the Example Design as a Starting Point	37
Know the Degree of Difficulty	37
Keep It Registered	38
Recognize Timing Critical Signals	38
Use Supported Design Flows	38
Make Only Allowed Modifications	38
Chapter 4: Core Architecture	
System Overview	39
Functional Description	41
Chapter 5: Interfacing to the Core	
Data Interface: Internal XGMII Interfaces	43
Interfacing to the Transmit Client Interface	45

Interfacing to the Receive Client Interface	47
Configuration and Status Interfaces	49
MDIO Interface	49
Configuration and Status Vectors	95
Debug Port	97
Chapter 6: Design Considerations	
Shared Logic	98
Clocking: UltraScale Architecture	99
Clocking: Zynq-7000, Virtex-7, Artix-7, and Kintex-7 Devices	100
Multiple Core Instances	109
Reset Circuits	109
Receiver Termination: Virtex-7 and Kintex-7 FPGAs	109
Transmit Skew	110
Chapter 7: Design Flow Steps	
Customizing and Generating the Core	111
Output Generation	114
Constraining the Core	114
Simulation	116
Synthesis and Implementation	117
Chapter 8: Detailed Example Design	
Chapter 9: Test Bench	
Appendix A: Verification and Interoperability	
Simulation	124
Hardware Testing	124
Appendix B: Migrating and Upgrading	
Device Migration	125
Migrating to the Vivado Design Suite	
Upgrading in the Vivado Design Suite	
Appendix C: Debugging Designs	
Finding Help on xilinx.com	132
Contacting Technical Support	
Debug Tools	
Simulation Specific Debug	

Hardware Debug	• • • • •	136
Appendix D: Additional Resources and Legal Notices		
Xilinx Resources		146
References		146
Additional Core Resources		147
Revision History		147
Please Read: Important Legal Notices		149

Introduction

The Xilinx® LogiCORE™ IP eXtended
Attachment Unit Interface (XAUI) core is a
high-performance, low-pin count 10-Gb/s
interface intended to allow physical separation
between the data link layer and physical layer
devices in a 10-Gigabit Ethernet system.

The XAUI core implements a single-speed full-duplex 10-Gb/s Ethernet eXtended Attachment Unit Interface (XAUI) solution for the UltraScale™ architecture (GTHE3 transceivers), Zynq®-7000 All Programmable SoC, and 7-series devices.

Features

- Designed to 10-Gigabit Ethernet IEEE 802.3-2012 specification
- Supports 20G double-rate XAUI (Double XAUI) using four transceivers at 6.25 Gb/s.
 For devices and speed grades, see Speed Grades.
- Supports 10-Gigabit Fiber Channel (10-GFC) XAUI data rates and traffic
- Uses four transceivers at 3.125 Gb/s line rate to achieve 10-Gb/s data rate
- Implements Data Terminal Equipment (DTE) XGMII Extender Sublayer (XGXS), PHY XGXS, and 10GBASE-X Physical Coding Sublayer (PCS) in a single netlist
- IEEE 802.3-2012 clause 45 Management Data Input/Output (MDIO) interface (optional)
- *IEEE 802.3-2012* clause 48 State Machines
- Available under the <u>Xilinx End User License</u>
 <u>Agreement</u>

LogiCORE IP Facts			
Core Specifics			
Supported Device Family ⁽¹⁾	UltraScale™ Architecture, Zynq®-7000, 7 Series Devices		
Supported User Interfaces	64-bit XGMII Interface		
Resources (2), (3)	See Table 2-2, Table 2-3, Table 2-4, and Table 2-5.		
	Provided with Core		
Design Files	Encrypted RTL		
Example Design	VHDL and Verilog		
Test Bench	VHDL Test Bench Verilog Test Fixture		
Constraints File	Xilinx Design Constraints (XDC)		
Simulation Model	VHDL/Verilog		
Supported S/W Drivers	NA		
	Tested Design Flows ⁽⁴⁾		
Design Entry	Vivado® Design Suite		
Simulation	For supported simulators, see the Xilinx Design Tools: Release Notes Guide.		
Synthesis	Vivado Synthesis		
Support			
Provided by Xilinx, Inc.@ www.xilinx.com/support			

For a complete list of supported devices, see Vivado IP catalog. See Verification for supported speed grades.

^{2.}Resource utilizations for 20 G are the same as those for 10 G. For detailed utilization numbers based upon configuration, see Table 2-2 through Table 2-5.

Resource utilization depends on target device and configuration. See Table 2-2 through Table 2-5 for detailed information.

^{4.}For the supported versions of the tools, see the <u>Xilinx Design Tools:</u> <u>Release Notes Guide.</u>

Overview

XAUI is a four-lane, 3.125 Gb/s-per-lane serial interface. Each lane is a differential pair carrying current mode logic (CML) signaling, and the data on each lane is 8B/10B encoded before transmission. Special code groups are used to allow each lane to synchronize at a word boundary and to deskew all four lanes into alignment at the receiving end. The XAUI standard is fully specified in clauses 47 and 48 of the 10-Gigabit Ethernet *IEEE 802.3-2012* specification.

The XAUI standard was initially developed as a means to extend the physical separation possible between Media Access Controller (MAC) and PHY components in a 10-Gigabit Ethernet system distributed across a circuit board and to reduce the number of interface signals in comparison with the XGMII (10-Gigabit Ethernet Media Independent Interface).

Figure 1-1 shows a block diagram of the XAUI core implementation. The major functional blocks of the core include the following:

- **Transmit Idle Generation Logic** creates the code groups to allow synchronization and alignment at the receiver.
- Synchronization State Machine (one per lane) identifies byte boundaries in incoming serial data.
- **Deskew State Machine** de-skews the four received lanes into alignment.
- **Optional MDIO Interface** is a two-wire low-speed serial interface used to manage the core.
- **Four Device-Specific Transceivers** (integrated in the FPGAs) provide the high-speed transceivers as well as 8B/10B encode and decode and elastic buffering in the receive datapath.

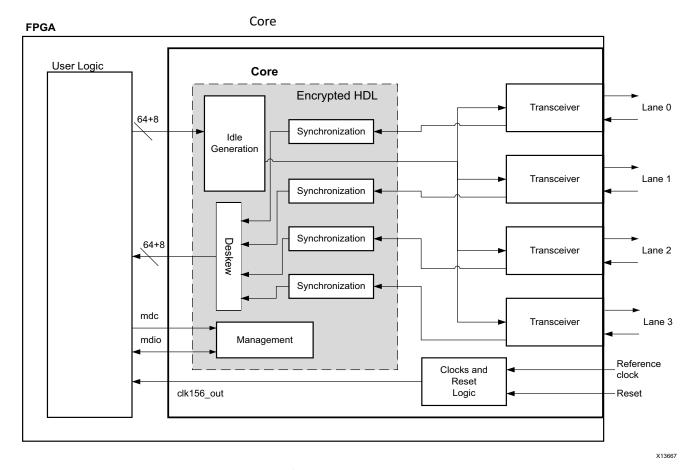


Figure 1-1: Architecture of the XAUI IP Core with Client-Side User Logic

Additional Features

10-Gigabit Fiber Channel Support

The 10-Gigabit Fiber Channel (10GFC) specification describes a XAUI interface similar to the 10-Gigabit Ethernet XAUI but operating at 2% higher line and data rates, equating to a line rate on each device-specific transceiver lane of 3.1875 Gb/s.

20-Gigabit XAUI (Double XAUI) Support

By running the XAUI interface at twice the normal clock and line rates, 20-Gigabit data rate can be achieved. For devices and speed grades, see Speed Grades. Consult the release notes for the core for the specific devices supported.

About the Core

The XAUI core is a Xilinx[®] Intellectual Property (IP) core, included in the latest IP Update on the Xilinx IP Center. For detailed information about the core, see the XAUI product page.

Recommended Design Experience

Although the XAUI core is a fully-verified solution, the challenge associated with implementing a complete design varies depending on the configuration and functionality of the application. For best results, previous experience building high performance, pipelined Field Programmable Gate Array (FPGA) designs using Xilinx implementation software and Xilinx Design Constraints (XDC) is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific requirements.

Applications

Figure 1-2 shows the XAUI core connecting a 10-Gigabit Ethernet MAC to a 10-Gigabit XPAK optical module.

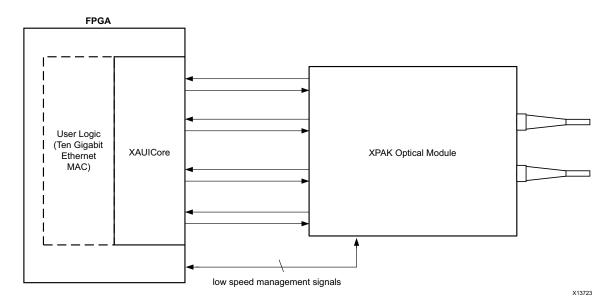


Figure 1-2: XAUI Connecting a 10-Gigabit Ethernet MAC to an Optical Module

After its publication, the applications of XAUI have extended beyond 10-Gigabit Ethernet to the backplane and other general high-speed interconnect applications. Figure 1-3 shows a typical backplane and other general high-speed interconnect applications.

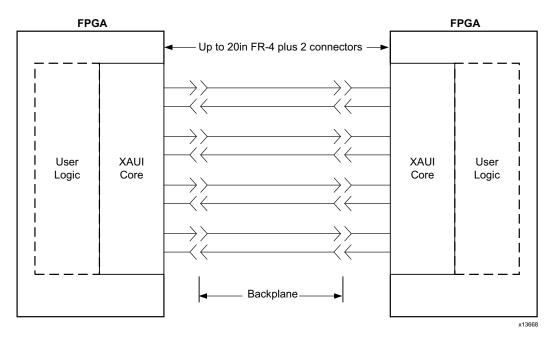


Figure 1-3: Typical Backplane Application for XAUI

Licensing and Ordering Information

This Xilinx LogiCORE™ IP module is provided at no additional cost with the Xilinx Vivado® Design Suite under the terms of the Xilinx End User License. Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information about pricing and availability of other Xilinx LogiCORE IP modules and tools, contact your local Xilinx sales representative.

Feedback

Xilinx welcomes comments and suggestions about the XAUI core and the documentation supplied with the core.

Core

For comments or suggestions about the XAUI core, submit a webcase from www.xilinx.com/support. Be sure to include the following information:

- Product name
- Core version number
- Explanation of your comments

Document

For comments or suggestions about this document, submit a webcase from www.xilinx.com/support. Be sure to include the following information:

- Document title
- Document number
- Page number(s) to which your comments refer
- Explanation of your comments

Product Specification

Standards Compliance

The XAUI IP core is designed to the standard specified in clauses 47 and 48 of the 10-Gigabit Ethernet specification *IEEE Std.* 802.3-2012.

Performance

This section contains the following subsections:

- Latency
- Speed Grades

Latency

These measurements are for the core only; they do not include the latency through the transceiver. The latency through the transceiver can be obtained from the relevant transceiver user guide.

Transmit Path Latency

As measured from the input port xgmii_txd[63:0] of the transmitter side XGMII (until that data appears on the txdata pins on the internal transceiver interface on the transceiver interface), the latency through the core for the internal XGMII interface configuration in the transmit direction is four clk periods of the core input usrclk.

Receive Path Latency

Measured from the input into the core encrypted hdl logic from the rxdata pins of the internal transceiver interface until the data appears on xgmii_rxdata[63:0] of the receiver side XGMII interface, the latency through the core in the receive direction is equal to 4–5 clock cycles of usrclk.

If the word appears on the upper half of the two-byte transceiver interface, the latency is five clock cycles of usrclk and it appears on the lower half of the XGMII interface. If it appears on the lower half of the two-byte interface, the latency is four clock cycles of usrclk and it appears on the upper half of the XGMII interface.

Speed Grades

The minimum device requirements for 10G and 20G operation are listed in the following table

Table 2-1: Speed Grades

Device	XAUI (4x3.125G)	DXAUI (4x6.25G)
UltraScale Architecture	-1-i-es1/-1-c-es1	-1-i-es1/-1-c-es1
Zynq-7000	-1	-2
Virtex-7	-1	-2
Kintex-7	-1	-2
Artix-7	-1	-2

Resource Utilization

UltraScale Architecture (GTH) Devices

Table 2-2 provides approximate resource counts for the various core options on UltraScale™ architecture.

Table 2-2: Device Utilization – UltraScale Architectures

Shared Logic	MDIO Management	LUTs	FFs
In Example Design	FALSE	724	995
In Example Design	TRUE	864	1094
In Core	FALSE	813	995
In Core	TRUE	956	1094

Virtex-7 (GTH) FPGAs

Table 2-3 provides approximate resource counts for the various core options on Virtex®-7 FPGAs.

Table 2-3: Device Utilization – Virtex-7 FPGAs

Shared Logic	MDIO Management	LUTs	FFs
In Example Design	FALSE	1036	1193
In Example Design	TRUE	1192	1292
In Core	FALSE	1114	1193
In Core	TRUE	1263	1292

Zynq-7000, Virtex-7 (GTX), and Kintex-7 Devices

Table 2-4 provides approximate resource counts for the various core options Kintex-7 devices.

Note: Zynq®-7000 device results are expected to be similar to Kintex-7 device results.

Table 2-4: Device Utilization – Kintex-7 Devices

Shared Logic	MDIO Management	LUTs	FFs
In Example Design	FALSE	765	945
In Example Design	TRUE	877	1044
In Core	FALSE	845	945
In Core	TRUE	957	1044

Artix-7 FPGAs

Table 2-5 provides approximate resource counts for the various core options on Artix®-7 FPGAs.

Table 2-5: Device Utilization - Artix-7 FPGAs

Shared Logic	MDIO Management	LUTs	FFs
In Example Design	FALSE	1027	1186
In Example Design	TRUE	1144	1285
In Core	FALSE	1107	1186
In Core	TRUE	1223	1285

Verification

The XAUI core has been verified using both simulation and hardware testing.

Simulation

A highly parameterizable transaction-based simulation test suite was used to verify the core. Verification tests include:

- Register access over MDIO
- Loss and regain of synchronization
- Loss and regain of alignment
- Frame transmission
- · Frame reception
- Clock compensation
- Recovery from error conditions

Hardware Verification

The core has been used in several hardware test platforms within Xilinx. In particular, the core has been used in a test platform design with the Xilinx® 10-Gigabit Ethernet MAC. This design comprises the MAC, XAUI, a *ping* loopback First In First Out (FIFO), and a test pattern generator all under embedded processor control. This design has been used for conformance and interoperability testing at the University of New Hampshire Interoperability Lab.

Port Descriptions

Client-Side Interface

The signals of the client-side interface are shown in Table 2-6. See Chapter 5, Interfacing to the Core for more information on connecting to the client-side interface.

Table 2-6: Client-Side Interface Ports

Signal Name	Direction	Description
xgmii_txd[63:0]	IN	Transmit data, eight bytes wide
xgmii_txc[7:0]	IN	Transmit control bits, one bit per transmit data byte
xgmii_rxd[63:0]	OUT	Received data, eight bytes wide
xgmii_rxc[7:0]	OUT	Receive control bits, one bit per received data byte

Transceiver I/O

The Transceiver Interface is no longer part of the ports of the core because it includes the transceiver. Instead there are the following ports.

- Ports Corresponding to the I/O of the transceiver
- Dynamic Reconfiguration Port of the transceiver

See Table 2-7.

Table 2-7: Ports Corresponding to the I/O of the Transceiver

Signal Name	Direction	Description
xaui_tx_l0_p, xaui_tx_l0_n, xaui_tx_l1_p, xaui_tx_l1_n, xaui_tx_l2_p, xaui_tx_l2_n, xaui_tx_l3_p, xaui_tx_l3_n	OUT	Differential complements of one another forming a differential transmit output pair. One pair for each of the 4 lanes.
xaui_rx_l0_p, xaui_rx_l0_n, xaui_rx_l1_p, xaui_rx_l1_n, xaui_rx_l2_p, xaui_rx_l2_n, xaui_rx_l3_p, xaui_rx_l3_n	IN	Differential complements of one another forming a differential receiver input pair. One pair for each of the 4 lanes.
signal_detect[3:0]	IN	Intended to be driven by an attached 10GBASE-LX4 optical module; they signify that each of the four optical receivers is receiving illumination and is therefore not just putting out noise. If an optical module is not in use, this four-wire bus should be tied to 1111.

Transceiver Control and Status Ports

Optional ports that, if enabled, allow the monitoring and control of certain important ports of the transceivers. When not selected, these ports are tied to their default values. For information on these ports, see the 7 Series FPGAs GTX/GTH Transceivers User Guide (UG476) [Ref 1], the 7 Series FPGAs GTP Transceivers User Guide (UG482) [Ref 2], and the UltraScale Architecture GTH Transceivers User Guide (UG576) [Ref 3].

Note: The Dynamic Reconfiguration Port is only available if the Transceiver Control and Status Ports option is selected

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs

Signal Name	Direction	Description	
CHANNEL 0			
		GT0 DRP	
gt0_drpaddr[8:0]	in	DRP address bus for channel 0	
gt0_drpen	in	DRP enable signal. 0: No read or write operation performed. 1: enables a read or write operation.	
gt0_drpdi[15:0]	in	Data bus for writing configuration data to the transceiver for channel 0.	
gt0_drpdo[15:0]	out	Data bus for reading configuration data from the transceiver for channel 0.	
gt0_drprdy	out	Indicates operation is complete for write operations and data is valid for read operations for channel 0.	
gt0_drpwe	in	DRP write enable for channel 0. 0: Read operation when drpen is 1. 1: Write operation when drpen is 1.	
gt0_drp_busy	out	(GTPE2 all configurations or GTHE2 10G configuration). Indicates the DRP interface is being used internally by the serial transceiver and should not be driven until this signal is deasserted.	
	GT0 TX	Reset and Initialization	
gt0_txpmareset_in	in	Starts the TX PMA reset process.	
gt0_txpcsreset_in	in	Starts the TX PCS reset process.	
gt0_txresetdone_out	out	When asserted the serial transceiver TX has finished reset and is ready for use.	
	GT0 RX	Reset and Initialization	
gt0_rxpmareset_in	in	Starts the RX PMA reset process.	
gt0_rxpcsreset_in	in	Starts the RX PCS reset process.	
gt0_rxpmaresetdone_out	out	(GTHE2 and GTPE2) This active-High signal indicates RX PMA reset is complete.	
gt0_rxresetdone_out	out	When asserted the serial transceiver RX has finished reset and is ready for use.	

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description	
GT0 Clocking			
gt0_rxbufstatus_out[2:0]	out	RX buffer status.	
gt0_txphaligndone_out	out	TX phase alignment done.	
gt0_txphinitdone_out	out	TX phase alignment initialization done.	
gt0_txdlysresetdone_out	out	TX delay alignment soft reset done.	
gt0_cplllock_out	out	(GTHE2) This active-High PLL frequency lock signal indicates that the PLL frequency is within predetermined tolerance.	
gt_qplllock_out	out	(GTXE2 and GTPE2) This active-High PLL frequency lock signal indicates that the PLL frequency is within predetermined tolerance.	
	Signal In	tegrity and Functionality	
		GT0 Eye scan	
gt0_eyescantrigger_in	in	Causes a trigger event.	
gt0_eyescanreset_in	in	This port is driven High and then deasserted to start the EYESCAN reset process.	
gt0_eyescandataerror_out	out	Asserts High for one rec_clk cycle when an (unmasked) error occurs while in the COUNT or ARMED state.	
gt0_rxrate_in[2:0]	in	This port dynamically controls the setting for the RX serial clock divider.	
		GTO Loopback	
gt0_loopback_in[2:0]	in	Determines the loopback mode.	
		GT0 Polarity	
gt0_rxpolarity_in	in	The rxpolarity port can invert the polarity of incoming data.	
gt0_txpolarity_in	in	The txpolarity port can invert the polarity of outgoing data.	
	GTO RX Decis	ion Feedback Equalizer (DFE)	
gt0_rxlpmen_in	in	(GTXE2 and GTHE2) RX datapath. 0: DFE. 1: LPM.	
gt0_rxdfelpmreset_in	in	(GTXE2 and GTHE2) Reset for LPM and DFE datapath.	
gt0_rxmonitorsel_in[1:0]	in	(GTXE2 and GTHE2) Select signal for gt0_rxmonitorout_out.	
gt0_rxmonitorout_out[6:0]	out	(GTXE2 and GTHE2) Monitor output.	
gt0_rxlpmreset_in	in	(GTPE2) This port is driven High and then deasserted to start the LPM reset process.	
gt0_rxlpmhfhold_in	in	(GTPE2) Determines whether the value of the high-frequency boost is either held or adapted.	
gt0_rxlpmhfovrden_in	in	(GTPE2) Determines whether the high-frequency boost is controlled by an attribute or a signal.	

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description	
gt0_rxlpmlfhold_in	in	(GTPE2) Determines whether the value of the low-frequency boost is either held or adapted.	
gt0_rxlpmlfovrden_in	in	(GTPE2) Determines whether the low-frequency boost is controlled by an attribute or a signal.	
		GT0 TX Driver	
gt0_txpostcursor_in[4:0]	in	Transmitter post-cursor TX post-emphasis control.	
gt0_txprecursor_in[4:0]	in	Transmitter post-cursor TX pre-emphasis control.	
gt0_txdiffctrl_in[3:0]	in	Driver Swing Control.	
		GTO PRBS	
gt0_rxprbscntreset_in	in	Resets the PRBS error counter.	
gt0_rxprbserr_out	out	This non-sticky status output indicates that PRBS errors have occurred.	
gt0_rxprbssel_in[2:0]	in	Receiver PRBS checker test pattern control.	
gt0_txprbssel_in[2:0]	in	Transmitter PRBS generator test pattern control.	
gt0_txprbsforceerr_in	in	When this port is driven High, errors are forced in the PRBS transmitter. While this port is asserted, the output data pattern contains errors.	
	•	GTO RX CDR	
gt0_rxcdrhold_in	in	Hold the CDR control loop frozen.	
	GTO Digital Monitor		
gt0_dmonitorout_out[7:0]	out	(GTXE2) Digital Monitor Output Bus	
gt0_dmonitorout_out[14:0]	out	(GTHE2) Digital Monitor Output Bus	
gt0_dmonitorout_out[14:0]	out	(GTPE2) Digital Monitor Output Bus	
GTO Status			
gt0_rxdisperr_out[3:0]	out	Active-High indicates the corresponding byte of the received data has a disparity error	
gt0_rxnotintable_out[3:0]	out	Active-High indicates the corresponding byte of the received data was not a valid character in the 8B/10B table.	
gt0_rxcommadet_out	out	This signal is asserted when the comma alignment block detects a comma.	

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description	
		CHANNEL 1	
		GT1 DRP	
gt1_drpaddr[8:0]	in	DRP address bus for channel 1.	
gt1_drpen	in	DRP enable signal. 0: No read or write operation performed. 1: enables a read or write operation.	
gt1_drpdi[15:0]	in	Data bus for writing configuration data to the transceiver for channel 1.	
gt1_drpdo[15:0]	out	Data bus for reading configuration data from the transceiver for channel 1.	
gt1_drprdy	out	Indicates operation is complete for write operations and data is valid for read operations for channel 1.	
gt1_drpwe	in	DRP write enable for channel 1. 0: Read operation when drpen is 1. 1: Write operation when drpen is 1.	
gt1_drp_busy	out	(GTPE2 all configurations or GTHE2 10G configuration). Indicates the DRP interface is being used internally by the serial transceiver and should not be driven until this signal is deasserted.	
	GT1 TX	Reset and Initialization	
gt1_txpmareset_in	in	Starts the TX PMA reset process.	
gt1_txpcsreset_in	in	Starts the TX PCS reset process.	
gt1_txresetdone_out	out	When asserted the serial transceiver TX has finished reset and is ready for use.	
	GT1 RX	Reset and Initialization	
gt1_rxpmareset_in	in	Starts the RX PMA reset process.	
gt1_rxpcsreset_in	in	Starts the RX PCS reset process.	
gt1_rxpmaresetdone_out	out	(GTHE2 and GTPE2) This active-High signal indicates RX PMA reset is complete.	
gt1_rxresetdone_out	out	When asserted the serial transceiver RX has finished reset and is ready for use.	
GT1 Clocking			
gt1_rxbufstatus_out[2:0]	out	RX buffer status.	
gt1_txphaligndone_out	out	TX phase alignment done.	
gt1_txphinitdone_out	out	TX phase alignment initialization done.	
gt1_txdlysresetdone_out	out	TX delay alignment soft reset done.	
gt1_cplllock_out	out	(GTHE2) This active-High PLL frequency lock signal indicates that the PLL frequency is within predetermined tolerance.	

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description	
Signal Integrity and Functionality			
GT1 Eye scan			
gt1_eyescantrigger_in	in	Causes a trigger event.	
gt1_eyescanreset_in	in	This port is driven High and then deasserted to start the EYESCAN reset process.	
gt1_eyescandataerror_out	out	Asserts High for one rec_clk cycle when an (unmasked) error occurs while in the COUNT or ARMED state.	
gt1_rxrate_in[2:0]	in	This port dynamically controls the setting for the RX serial clock divider.	
		GT1 Loopback	
gt1_loopback_in[2:0]	in	Determines the loopback mode.	
		GT1 Polarity	
gt1_rxpolarity_in	in	The rxpolarity port can invert the polarity of incoming data.	
gt1_txpolarity_in	in	The txpolarity port can invert the polarity of outgoing data.	
G	T1 RX Decis	ion Feedback Equalizer (DFE)	
gt1_rxlpmen_in	in	(GTXE2 and GTHE2) RX datapath. 0: DFE. 1: LPM.	
gt1_rxdfelpmreset_in	in	(GTXE2 and GTHE2) Reset for LPM and DFE datapath.	
gt1_rxmonitorsel_in[1:0]	in	(GTXE2 and GTHE2) Select signal for gt1_rxmonitorout_out.	
gt1_rxmonitorout_out[6:0]	out	(GTXE2 and GTHE2) Monitor output.	
gt1_rxlpmreset_in	in	(GTPE2) This port is driven High and then deasserted to start the LPM reset process.	
gt1_rxlpmhfhold_in	in	(GTPE2) Determines whether the value of the high-frequency boost is either held or adapted.	
gt1_rxlpmhfovrden_in	in	(GTPE2) Determines whether the high-frequency boost is controlled by an attribute or a signal.	
gt1_rxlpmlfhold_in	in	(GTPE2) Determines whether the value of the low-frequency boost is either held or adapted.	
gt1_rxlpmlfovrden_in	in	(GTPE2) Determines whether the low-frequency boost is controlled by an attribute or a signal.	
GT1 TX Driver			
gt1_txpostcursor_in[4:0]	in	Transmitter post-cursor TX post-emphasis control.	
gt1_txprecursor_in[4:0]	in	Transmitter post-cursor TX pre-emphasis control.	
gt1_txdiffctrl_in[3:0]	in	Driver Swing Control.	

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description	
GT1 PRBS			
gt1_rxprbscntreset_in	in	Resets the PRBS error counter.	
gt1_rxprbserr_out	out	This non-sticky status output indicates that PRBS errors have occurred.	
gt1_rxprbssel_in[2:0]	in	Receiver PRBS checker test pattern control.	
gt1_txprbssel_in[2:0]	in	Transmitter PRBS generator test pattern control.	
gt1_txprbsforceerr_in	in	When this port is driven High, errors are forced in the PRBS transmitter. While this port is asserted, the output data pattern contains errors.	
	<u></u>	GT1 RX CDR	
gt1_rxcdrhold_in	in	Hold the CDR control loop frozen.	
	G	[1 Digital Monitor	
gt1_dmonitorout_out[7:0]	out	(GTXE2) Digital Monitor Output Bus	
gt1_dmonitorout_out[14:0]	out	(GTHE2) Digital Monitor Output Bus	
gt1_dmonitorout_out[14:0]	out	(GTPE2) Digital Monitor Output Bus	
		GT1 Status	
gt1_rxdisperr_out[3:0]	out	Active-High indicates the corresponding byte of the received data has a disparity error	
gt1_rxnotintable_out[3:0]	out	Active-High indicates the corresponding byte of the received data was not a valid character in the 8B/10B table.	
gt1_rxcommadet_out	out	This signal is asserted when the comma alignment block detects a comma.	
CHANNEL 2			
		GT2 DRP	
gt2_drpaddr[8:0]	in	DRP address bus for channel 2.	
gt2_drpen	in	DRP enable signal. 0: No read or write operation performed. 1: enables a read or write operation.	
gt2_drpdi[15:0]	in	Data bus for writing configuration data to the transceiver for channel 2.	
gt2_drpdo[15:0]	out	Data bus for reading configuration data from the transceiver for channel 2.	
gt2_drprdy	out	Indicates operation is complete for write operations and data is valid for read operations for channel 2.	
gt2_drpwe	in	DRP write enable for channel 2. 0: Read operation when drpen is 1. 1: Write operation when drpen is 1.	

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Direction	Description
out	(GTPE2 all configurations or GTHE2 10G configuration). Indicates the DRP interface is being used internally by the serial transceiver and should not be driven until this signal is deasserted.
GT2 TX	Reset and Initialization
in	Starts the TX PMA reset process.
in	Starts the TX PCS reset process.
out	When asserted the serial transceiver TX has finished reset and is ready for use.
GT2 RX	Reset and Initialization
in	Starts the RX PMA reset process.
in	Starts the RX PCS reset process.
out	(GTHE2 and GTPE2) This active-High signal indicates RX PMA reset is complete.
out	When asserted the serial transceiver RX has finished reset and is ready for use.
,	GT2 Clocking
out	RX buffer status.
out	TX phase alignment done.
out	TX phase alignment initialization done.
out	TX delay alignment soft reset done.
out	(GTHE2) This active-High PLL frequency lock signal indicates that the PLL frequency is within predetermined tolerance.
Signal Int	tegrity and Functionality
	GT2 Eye Scan
in	Causes a trigger event.
in	This port is driven High and then deasserted to start the EYESCAN reset process.
out	Asserts High for one rec_clk cycle when an (unmasked) error occurs while in the COUNT or ARMED state.
in	This port dynamically controls the setting for the RX serial clock divider.
	GT2 Loopback
in	Determines the loopback mode.
	out GT2 TX in in out GT2 RX in in out out out out out out out ou

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description
		GT2 Polarity
gt2_rxpolarity_in	in	The rxpolarity port can invert the polarity of incoming data.
gt2_txpolarity_in	in	The txpolarity port can invert the polarity of outgoing data.
(T2 RX Decis	ion Feedback Equalizer (DFE)
gt2_rxlpmen_in	in	(GTXE2 and GTHE2) RX datapath. 0: DFE. 1: LPM.
gt2_rxdfelpmreset_in	in	(GTXE2 and GTHE2) Reset for LPM and DFE datapath.
gt2_rxmonitorsel_in[1:0]	in	(GTXE2 and GTHE2) Select signal for gt2_rxmonitorout_out.
gt2_rxmonitorout_out[6:0]	out	(GTXE2 and GTHE2) Monitor output.
gt2_rxlpmreset_in	in	(GTPE2) This port is driven High and then deasserted to start the LPM reset process.
gt2_rxlpmhfhold_in	in	(GTPE2) Determines whether the value of the high-frequency boost is either held or adapted.
gt2_rxlpmhfovrden_in	in	(GTPE2) Determines whether the high-frequency boost is controlled by an attribute or a signal.
gt2_rxlpmlfhold_in	in	(GTPE2) Determines whether the value of the low-frequency boost is either held or adapted.
gt2_rxlpmlfovrden_in	in	(GTPE2) Determines whether the low-frequency boost is controlled by an attribute or a signal.
		GT2 TX Driver
gt2_txpostcursor_in[4:0]	in	Transmitter post-cursor TX post-emphasis control.
gt2_txprecursor_in[4:0]	in	Transmitter post-cursor TX pre-emphasis control.
gt2_txdiffctrl_in[3:0]	in	Driver Swing Control.
		GT2 PRBS
gt2_rxprbscntreset_in	in	Resets the PRBS error counter.
gt2_rxprbserr_out	out	This non-sticky status output indicates that PRBS errors have occurred.
gt2_rxprbssel_in[2:0]	in	Receiver PRBS checker test pattern control.
gt2_txprbssel_in[2:0]	in	Transmitter PRBS generator test pattern control.
gt2_txprbsforceerr_in	in	When this port is driven High, errors are forced in the PRBS transmitter. While this port is asserted, the output data pattern contains errors.
		GT2 RX CDR
gt2_rxcdrhold_in	in	Hold the CDR control loop frozen.

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description	
GT2 Digital Monitor			
gt2_dmonitorout_out[7:0]	out	(GTXE2) Digital Monitor Output Bus	
gt2_dmonitorout_out[14:0]	out	(GTHE2) Digital Monitor Output Bus	
gt2_dmonitorout_out[14:0]	out	(GTPE2) Digital Monitor Output Bus	
		GT2 Status	
gt2_rxdisperr_out[3:0]	out	Active-High indicates the corresponding byte of the received data has a disparity error	
gt2_rxnotintable_out[3:0]	out	Active-High indicates the corresponding byte of the received data was not a valid character in the 8B/10B table.	
gt2_rxcommadet_out	out	This signal is asserted when the comma alignment block detects a comma.	
		CHANNEL 3	
		GT3 DRP	
gt3_drpaddr[8:0]	in	DRP address bus for channel 3.	
gt3_drpen	in	DRP enable signal. 0: No read or write operation performed. 1: enables a read or write operation.	
gt3_drpdi[15:0]	in	Data bus for writing configuration data to the transceiver for channel 3.	
gt3_drpdo[15:0]	out	Data bus for reading configuration data from the transceiver for channel 3.	
gt3_drprdy	out	Indicates operation is complete for write operations and data is valid for read operations for channel 3.	
gt3_drpwe	in	DRP write enable for channel 3. 0: Read operation when drpen is 1. 1: Write operation when drpen is 1.	
gt3_drp_busy	out	(GTPE2 all configurations or GTHE2 10G configuration). Indicates the DRP interface is being used internally by the serial transceiver and should not be driven until this signal is deasserted.	
	GT3 TX	Reset and Initialization	
gt3_txpmareset_in	in	Starts the TX PMA reset process.	
gt3_txpcsreset_in	in	Starts the TX PCS reset process.	
gt3_txresetdone_out	out	When asserted the serial transceiver TX has finished reset and is ready for use.	
GT3 RX Reset and Initialization			
gt3_rxpmareset_in	in	Starts the RX PMA reset process.	
gt3_rxpcsreset_in	in	Starts the RX PCS reset process.	

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description
gt3_rxpmaresetdone_out	out	(GTHE2 and GTPE2) This active-High signal indicates RX PMA reset is complete.
gt3_rxresetdone_out	out	When asserted the serial transceiver RX has finished reset and is ready for use.
		GT3 Clocking
gt3_rxbufstatus_out[2:0]	out	RX buffer status.
gt3_txphaligndone_out	out	TX phase alignment done.
gt3_txphinitdone_out	out	TX phase alignment initialization done.
gt3_txdlysresetdone_out	out	TX delay alignment soft reset done.
gt3_cplllock_out	out	(GTHE2) This active-High PLL frequency lock signal indicates that the PLL frequency is within predetermined tolerance.
	Signal In	tegrity and Functionality
		GT3 Eye Scan
gt3_eyescantrigger_in	in	Causes a trigger event.
gt3_eyescanreset_in	in	This port is driven High and then deasserted to start the EYESCAN reset process.
gt3_eyescandataerror_out	out	Asserts High for one rec_clk cycle when an (unmasked) error occurs while in the COUNT or ARMED state.
gt3_rxrate_in[2:0]	in	This port dynamically controls the setting for the RX serial clock divider.
	- 1	GT3 Loopback
gt3_loopback_in[2:0]	in	Determines the loopback mode.
		GT3 Polarity
gt3_rxpolarity_in	in	The rxpolarity port can invert the polarity of incoming data.
gt3_txpolarity_in	in	The txpolarity port can invert the polarity of outgoing data.
	GT3 RX Decis	ion Feedback Equalizer (DFE)
gt3_rxlpmen_in	in	(GTXE2 and GTHE2) RX datapath. 0: DFE. 1: LPM.
gt3_rxdfelpmreset_in	in	(GTXE2 and GTHE2) Reset for LPM and DFE datapath.
gt3_rxmonitorsel_in[1:0]	in	(GTXE2 and GTHE2) Select signal for gt3_rxmonitorout_out.
gt3_rxmonitorout_out[6:0]	out	(GTXE2 and GTHE2) Monitor output.
gt3_rxlpmreset_in	in	(GTPE2) This port is driven High and then deasserted to start the LPM reset process.
gt3_rxlpmhfhold_in	in	(GTPE2) Determines whether the value of the high-frequency boost is either held or adapted.

Table 2-8: Transceiver Control and Status Ports —7 Series FPGAs (Cont'd)

Signal Name	Direction	Description	
gt3_rxlpmhfovrden_in	in	(GTPE2) Determines whether the high-frequency boost is controlled by an attribute or a signal.	
gt3_rxlpmlfhold_in	in	(GTPE2) Determines whether the value of the low-frequency boost is either held or adapted.	
gt3_rxlpmlfovrden_in	in	(GTPE2) Determines whether the low-frequency boost is controlled by an attribute or a signal.	
	•	GT3 TX Driver	
gt3_txpostcursor_in[4:0]	in	Transmitter post-cursor TX post-emphasis control.	
gt3_txprecursor_in[4:0]	in	Transmitter post-cursor TX pre-emphasis control.	
gt3_txdiffctrl_in[3:0]	in	Driver Swing Control.	
		GT3 PRBS	
gt3_rxprbscntreset_in	in	Resets the PRBS error counter.	
gt3_rxprbserr_out	out	This non-sticky status output indicates that PRBS errors have occurred.	
gt3_rxprbssel_in[2:0]	in	Receiver PRBS checker test pattern control.	
gt3_txprbssel_in[2:0]	in	Transmitter PRBS generator test pattern control.	
gt3_txprbsforceerr_in	in	When this port is driven High, errors are forced in the PRBS transmitter. While this port is asserted, the output data pattern contains errors.	
	1	GT3 RX CDR	
gt3_rxcdrhold_in	in	Hold the CDR control loop frozen.	
GT3 Digital Monitor			
gt3_dmonitorout_out[7:0]	out	(GTXE2) Digital Monitor Output Bus	
gt3_dmonitorout_out[14:0]	out	(GTHE2) Digital Monitor Output Bus	
gt3_dmonitorout_out[14:0]	out	(GTPE2) Digital Monitor Output Bus	
GT3 Status			
gt3_rxdisperr_out[3:0]	out	Active-High indicates the corresponding byte of the received data has a disparity error	
gt3_rxnotintable_out[3:0]	out	Active-High indicates the corresponding byte of the received data was not a valid character in the 8B/10B table.	
gt3_rxcommadet_out	out	This signal is asserted when the comma alignment block detects a comma.	

Table 2-9: Transceiver Control and Status Ports — UltraScale Architectures

Signal Name	Direction	Description			
	GTO DRP				
gt0_drpaddr[8:0]	in	DRP address bus for channel 0			
gt0_drpen	in	DRP enable signal. 0: No read or write operation performed. 1: enables a read or write operation.			
gt0_drpdi[15:0]	in	Data bus for writing configuration data to the transceiver for channel 0.			
gt0_drpdo[15:0]	out	Data bus for reading configuration data from the transceiver for channel 0.			
gt0_drprdy	out	Indicates operation is complete for write operations and data is valid for read operations for channel 0.			
gt0_drpwe	in	DRP write enable for channel 0. 0: Read operation when drpen is 1. 1: Write operation when drpen is 1.			
		GT1 DRP			
gt1_drpaddr[8:0]	in	DRP address bus for channel 1			
gt1_drpen	in	DRP enable signal. 0: No read or write operation performed. 1: enables a read or write operation.			
gt1_drpdi[15:0]	in	Data bus for writing configuration data to the transceiver for channel 1.			
gt1_drpdo[15:0]	out	Data bus for reading configuration data from the transceiver for channel 1.			
gt1_drprdy	out	Indicates operation is complete for write operations and data is valid for read operations for channel 1.			
gt1_drpwe	in	DRP write enable for channel 1. 0: Read operation when drpen is 1. 1: Write operation when drpen is 1.			
	GT2 DRP				
gt2_drpaddr[8:0]	in	DRP address bus for channel 2			
gt2_drpen	in	DRP enable signal. 0: No read or write operation performed. 1: enables a read or write operation.			
gt2_drpdi[15:0]	in	Data bus for writing configuration data to the transceiver for channel 2.			
gt2_drpdo[15:0]	out	Data bus for reading configuration data from the transceiver for channel 2.			

Table 2-9: Transceiver Control and Status Ports — UltraScale Architectures (Cont'd)

Signal Name	Direction	Description	
gt2_drprdy	out	Indicates operation is complete for write operations and data is valid for read operations for channel 2.	
gt2_drpwe	in	DRP write enable for channel 2. 0: Read operation when drpen is 1. 1: Write operation when drpen is 1.	
		GT3 DRP	
gt3_drpaddr[8:0]	in	DRP address bus for channel 3	
gt3_drpen	in	DRP enable signal. 0: No read or write operation performed. 1: enables a read or write operation.	
gt3_drpdi[15:0]	in	Data bus for writing configuration data to the transceiver for channel 3.	
gt3_drpdo[15:0]	out	Data bus for reading configuration data from the transceiver for channel 3.	
gt3_drprdy	out	Indicates operation is complete for write operations and data is valid for read operations for channel 3.	
gt3_drpwe	in	DRP write enable for channel 3. 0: Read operation when drpen is 1. 1: Write operation when drpen is 1.	
	Т	X Reset and Initialization	
gt_txpmareset[3:0]	in	Starts the TX PMA reset process.	
gt_txpcsreset[3:0]	in	Starts the TX PCS reset process.	
gt_txresetdone[3:0]	out	When asserted the serial transceiver TX has finished reset and is ready for use.	
	R	X Reset and Initialization	
gt_rxpmareset[3:0]	in	Starts the RX PMA reset process.	
gt_rxpcsreset[3:0]	in	Starts the RX PCS reset process.	
gt_rxpmaresetdone[3:0]	out		
gt_rxresetdone[3:0]	out	When asserted the serial transceiver RX has finished reset and is ready for use.	
Clocking			
gt_rxbufstatus[11:0]	out	RX buffer status.	
gt_txphaligndone[3:0]	out	TX phase alignment done.	
gt_txphinitdone[3:0]	out	TX phase alignment initialization done.	
gt_txdlysresetdone[3:0]	out	TX delay alignment soft reset done.	
gt_qplllock	out	This active-High PLL frequency lock signal indicates that the PLL frequency is within predetermined tolerance.	

Table 2-9: Transceiver Control and Status Ports — UltraScale Architectures (Cont'd)

Signal Name	Direction	Description	
	Sign	al Integrity and Functionality	
Eye Scan			
gt_eyescantrigger[3:0]	in	Causes a trigger event.	
gt_eyescanreset[3:0]	in	This port is driven High and then deasserted to start the EYESCAN reset process.	
gt_eyescandataerror[3:0]	out	Asserts High for one rec_clk cycle when an (unmasked) error occurs while in the COUNT or ARMED state.	
gt_rxrate[11:0]	in	This port dynamically controls the setting for the RX serial clock divider.	
	+	Loopback	
gt_loopback[11:0]	in	Determines the loopback mode.	
	1	Polarity	
gt_rxpolarity[3:0]	in	The rxpolarity port can invert the polarity of incoming data.	
gt_txpolarity[3:0]	in	The txpolarity port can invert the polarity of outgoing data.	
	RX Dec	cision Feedback Equalizer (DFE)	
gt_rxlpmen[3:0]	in	RX datapath. 0: DFE. 1: LPM.	
gt_rxdfelpmreset[3:0]	in	Reset for LPM and DFE datapath.	
		TX Driver	
gt_txpostcursor[19:0]	in	Transmitter post-cursor TX post-emphasis control.	
gt_txprecursor[19:0]	in	Transmitter post-cursor TX pre-emphasis control.	
gt_txdiffctrl[15:0]	in	Driver Swing Control.	
	ı	PRBS	
gt_rxprbscntreset[3:0]	in	Resets the PRBS error counter.	
gt_rxprbserr[3:0]	out	This non-sticky status output indicates that PRBS errors have occurred.	
gt_rxprbssel[15:0]	in	Receiver PRBS checker test pattern control.	
gt_txprbssel[15:0]	in	Transmitter PRBS generator test pattern control.	
gt_txprbsforceerr[3:0]	in	When this port is driven High, errors are forced in the PRBS transmitter. While this port is asserted, the output data pattern contains errors.	
		RX CDR	
gt_rxcdrhold[3:0]	in	Hold the CDR control loop frozen.	

Table 2-9: Transceiver Control and Status Ports — UltraScale Architectures (Cont'd)

Signal Name	Direction	Description
Digital Monitor		
gt_dmonitorout[67:0] out Digital Monitor Output Bus		Digital Monitor Output Bus
Status		
gt_rxdisperr[7:0]	out	Active-High indicates the corresponding byte of the received data has a disparity error.
gt_rxnotintable[7:0]	out	Active-High indicates the corresponding byte of the received data was not a valid character in the 8B/10B table.
gt_rxcommadet[3:0]	out	This signal is asserted when the comma alignment block detects a comma.

If you are migrating from a 7 series to an UltraScale device, the prefixes of the optional transceiver debug ports for single-lane cores are changed from "gt0", "gt1" to "gt", and the suffix "_in" and "_out" are dropped. For multi-lane cores, the prefixes of the optional transceiver debug ports gt(n) are aggregated into a single port. See Device Migration for more information

MDIO Interface

The MDIO Interface signals are shown in Table 2-10. More information on using this interface can be found in Chapter 5, Interfacing to the Core.

Table 2-10: MDIO Management Interface Ports

Signal Name	Direction	Description
mdc	IN	Management clock
mdio_in	IN	MDIO input
mdio_out	OUT	MDIO output
mdio_tri	OUT	MDIO 3-state; '1' disconnects the output driver from the MDIO bus.
type_sel[1:0]	IN	Type select
prtad[4:0]	IN	MDIO port address; you should set this to provide a unique ID on the MDIO bus.

Configuration and Status Signals

The Configuration and Status Signals are shown in Table 2-11. See Configuration and Status Interfaces for more information on these signals, including a breakdown of the configuration and status vectors.

Table 2-11: Configuration and Status Ports

Signal Name	Direction	Description
configuration_ vector[6:0]	IN	Configuration information for the core.
status_vector[7:0]	OUT	Status information from the core.
debug[5]	OUT	align_status: 1 when the XAUI receiver is aligned across all four lanes, 0 otherwise.
debug[4:1]	OUT	sync_status: Each pin is 1 when the respective XAUI lane receiver is synchronized to byte boundaries, 0 otherwise.
debug[0]	OUT	Indicates when the TX phase alignment of the transceiver has been completed.

Clocking and Reset Signals and Module

Included in the example design top-level sources are circuits for clock and reset management. These can include Digital Clock Managers (DCMs), Mixed-Mode Clock Managers (MMCMs), reset synchronizers, or other useful utility circuits that might be useful in your particular application.

Table 2-12 shows the ports that are associated with system clocks and resets.

Table 2-12: Clock and Reset Ports with Shared Logic in the Example Design

Signal Name	Direction	Description
dclk	IN	Clock used as the DRP clock, and also as a stable reference clock for the detection of the feedback and reference clock signals to the QPLL. The input reference clock to the QPLL or any output clock generated from the QPLL (for example, TXOUTCLK) must not be used to drive this clock. For UltraScale devices, this clock is also used in the internal state machines for the configuration of the transceiver.
refclk	IN	External clock for the Channel PLL. This clock should have a frequency of 156.25 MHz for 10G XAUI and 312.5 MHz for 20G XAUI.
clk156_out	OUT	System clock for the encrypted HDL logic and for the device-specific transceiver logic ports. This clock must have a frequency of 156.25 MHz for 10G XAUI operation. 312.5 MHz for 20G XAUI operation.
clk156_lock	OUT	This active-High PLL frequency lock signal indicates that the PLL frequency is within predetermined tolerance. The transceiver and its clock outputs are not reliable until this condition is met.
reset	IN	Asynchronous external reset

Table 2-13 shows the ports that are associated with system clocks and resets.

Table 2-13: Clock and Reset Ports with Shared Logic in Core

Signal Name	Direction	Description
dclk	IN	Clock used as the DRP clock, and also as a stable reference clock for the detection of the feedback and reference clock signals to the QPLL. The input reference clock to the QPLL or any output clock generated from the QPLL (for example, TXOUTCLK) must not be used to drive this clock. For UltraScale devices this clock is also used in the internal state machines for the configuration of the transceiver.
refclk_p	IN	Differential transceiver reference clock "p."
refclk_n	IN	Differential transceiver reference clock "n."
clk156_out	OUT	System clock for the encrypted HDL logic and for the device-specific transceiver logic ports. This clock must have a frequency of 156.25 MHz for 10G XAUI operation. 312.5 MHz for 20G XAUI operation.
clk156_lock	OUT	This active-High PLL frequency lock signal indicates that the PLL frequency is within predetermined tolerance. The transceiver and its clock outputs are not reliable until this condition is met.
reset	IN	Asynchronous external reset

Register Space

MDIO Management Registers

The XAUI core, when generated with an MDIO interface, implements an MDIO Interface Register block. The core responds to MDIO transactions as either a 10GBASE-X PCS, a DTE XS, or a PHY XS depending on the setting of the type_sel port (see Table 2-10).

10GBASE-X PCS Registers

Table 2-14 shows the MDIO registers present when the XAUI core is configured as a 10GBASE-X PCS.

Table 2-14: 10GBASE-X PCS/PMA MDIO Registers

Register Address	Register Name
1.0	Physical Medium Attachment/Physical Medium Dependent (PMA/PMD) Control 1
1.1	PMA/PMD Status 1
1.2,1.3	PMA/PMD Device Identifier
1.4	PMA/PMD Speed Ability
1.5, 1.6	PMA/PMD Devices in Package
1.7	10G PMA/PMD Control 2
1.8	10G PMA/PMD Status 2
1.9	Reserved
1.10	10G PMD Receive Signal OK
1.11 to 1.13	Reserved
1.14, 1.15	PMA/PMD Package Identifier
1.16 to 1.65 535	Reserved
3.0	PCS Control 1
3.1	PCS Status 1
3.2, 3.3	PCS Device Identifier
3.4	PCS Speed Ability
3.5, 3.6	PCS Devices in Package
3.7	10G PCS Control 2
3.8	10G PCS Status 2
3.9 to 3.13	Reserved
3.14, 3.15	PCS Package Identifier
3.16 to 3.23	Reserved

Table 2-14: 10GBASE-X PCS/PMA MDIO Registers (Cont'd)

Register Address	Register Name
3.24	10GBASE-X PCS Status
3.25	10GBASE-X Test Control
3.26 to 3.65 535	Reserved

DTE XS Registers

Table 2-15 shows the MDIO registers present when the XAUI core is configured as a DTE XS.

Table 2-15: DTE XS MDIO Registers

Register Address	Register Name
5.0	DTE XS Control 1
5.1	DTE XS Status 1
5.2, 5.3	DTE XS Device Identifier
5.4	DTE XS Speed Ability
5.5, 5.6	DTE XS Devices in Package
5.7	Reserved
5.8	DTE XS Status 2
5.9 to 5.13	Reserved
5.14, 5.15	DTE XS Package Identifier
5.16 to 5.23	Reserved
5.24	10G DTE XGXS Lane Status
5.25	10G DTE XGXS Test Control

PHY XS Registers

Table 2-16 shows the MDIO registers present when the XAUI core is configured as a PHY XS.

Table 2-16: PHY XS MDIO Registers

Register Address	Register Name
4.0	PHY XS Control 1
4.1	PHY XS Status 1
4.2, 4.3	PHY XS Device Identifier
4.4	PHY XS Speed Ability
4.5, 4.6	PHY XS Devices in Package
4.7	Reserved
4.8	PHY XS Status 2
4.9 to 4.13	Reserved
4.14, 4.15	PHY XS Package Identifier
4.16 to 4.23	Reserved
4.24	10G PHY XGXS Lane Status
4.25	10G PHY XGXS Test Control

Designing with the Core

This chapter provides a general description of how to use the XAUI core in your designs and should be used in conjunction with Chapter 5, Interfacing to the Core which describes specific core interfaces.

This chapter also describes the steps required to turn a XAUI core into a fully-functioning design with user-application logic. It is important to realize that not all implementations require all of the design steps listed in this chapter. Follow the logic design guidelines in Chapter 6, Design Considerations.

Use the Example Design as a Starting Point

Each instance of the XAUI core is delivered with an example design that can be implemented in an FPGA and simulated. This design can be used as a starting point for your own design or can be used to sanity-check your application in the event of difficulty.

See Chapter 8, Detailed Example Design for information about using and customizing the example designs for the XAUI core.

Know the Degree of Difficulty

XAUI designs are challenging to implement in any technology, and the degree of difficulty is further influenced by:

- Maximum system clock frequency
- Targeted device architecture
- Nature of your application

All XAUI implementations need careful attention to system performance requirements. Pipelining, logic mapping, placement constraints, and logic duplication are all methods that help boost system performance.

Keep It Registered

To simplify timing and increase system performance in an FPGA design, keep all inputs and outputs registered between your application and the core. This means that all inputs and outputs from your application should come from, or connect to a flip-flop. While registering signals might not be possible for all paths, it simplifies timing analysis and makes it easier for the Xilinx[®] tools to place and route the design.

Recognize Timing Critical Signals

The supplied constraint file provided with the example design for the core identifies the critical signals and the timing constraints that should be applied. See Chapter 8, Constraining the Core for further information.

Use Supported Design Flows

The core HDL is added to the open Vivado® Design Suite project. Later the core is synthesized along with the rest of the project as part of project synthesis.

Make Only Allowed Modifications

The XAUI core is not user-modifiable. Do not make modifications as they might have adverse effects on system timing and protocol compliance. Supported user configurations of the XAUI core can only be made by selecting the options from within the Vivado Design Suite when the core is generated. See Chapter 7, Customizing and Generating the Core.

Core Architecture

This chapter describes the overall architecture of the XAUI core and also describes the major interfaces to the core.

System Overview

XAUI is a four-lane, 3.125 Gb/s per-lane serial interface. 20 G–XAUI is supported in Zynq®-7000, Kintex®-7, Virtex®-7, and Artix®-7 devices (–2 speed grades) and UltraScale architecture using four transceivers at 6.25 Gb/s. Each lane is a differential pair, carrying current mode logic (CML) signaling; the data on each lane is 8B/10B encoded before transmission. Special code groups are used to allow each lane to synchronize at a word boundary and to deskew all four lanes into alignment at the receiving end. The XAUI standard is fully specified in clauses 47 and 48 of the 10-Gigabit Ethernet specification *IEEE Std. 802.3-2012*.

The XAUI standard was initially developed as a means to extend the physical separation possible between Media Access Controller (MAC) and physical-side interface (PHY) components in a 10-Gigabit Ethernet system distributed across a circuit board, and to reduce the number of interface signals in comparison with the Ten Gigabit Ethernet Media Independent Interface (XGMII). Figure 4-1 shows the XAUI core being used to connect to a 10-Gigabit Expansion Pack (XPAK) optical module.

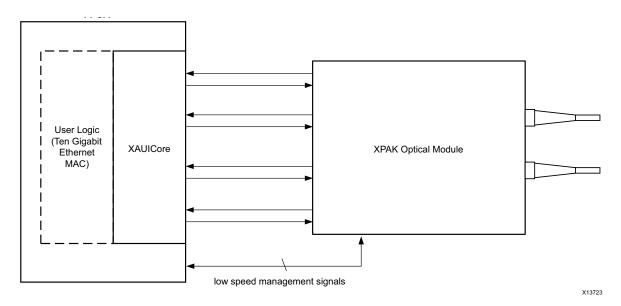


Figure 4-1: Connecting XAUI to an Optical Module

After its publication, the applications of XAUI have extended beyond 10-Gigabit Ethernet to the backplane and other general high-speed interconnect applications. A typical backplane application is shown in Figure 4-2.

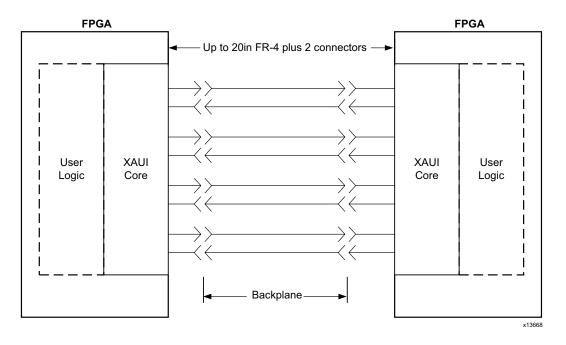


Figure 4-2: Typical Backplane Application for XAUI

Functional Description

Figure 4-3 shows a block diagram of the implementation of the XAUI core. The architecture is similar for all supported devices. The major functional blocks of the core include the following:

- Transmit idle generation logic
 - Creates the code groups to allow synchronization and alignment at the receiver.
- Synchronization state machine (one per lane)
 - Identifies byte boundaries in incoming serial data.
- · Deskew state machine
 - Deskews the four received lanes into alignment.
- Optional MDIO interface
 - A 2-wire low-speed serial interface used to manage the core.
- Embedded FPGA transceivers. Provides high-speed transceivers as well as 8B/10B encode and decode, and elastic buffering in the receive datapath.

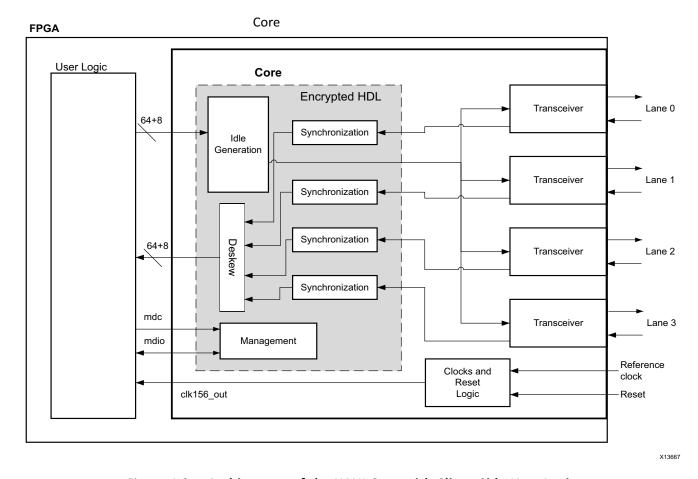


Figure 4-3: Architecture of the XAUI Core with Client-Side User Logic

Interfacing to the Core

This chapter describes how to connect to the data interfaces of the core and configuration and status interfaces of the XAUI core.

Data Interface: Internal XGMII Interfaces

Internal 64-bit SDR Client-side Interface

The 64-bit single-data rate (SDR) client-side interface is based upon a 32-bit XGMII-like interface. The key difference is a demultiplexing of the bus from 32- bits wide to 64-bits wide on a single rising clock edge. This demultiplexing is done by extending the bus upwards so that there are now eight lanes of data numbered 0–7; the lanes are organized such that data appearing on lanes 4–7 is transmitted or received *later* in time than that in lanes 0–3.

The mapping of lanes to data bits is shown in Table 5-1. The lane number is also the index of the control bit for that particular lane; for example, $xgmii_txc[2]$ and $xgmii_txd[23:16]$ are the control and data bits respectively for lane 2.

Table 5-1: xgmii_txd, xgmii_rxd Lanes for Internal 64-bit Client-Side Interface

Lane	xgmii_txd, xgmii_rxd Bits
0	7:0
1	15:8
2	23:16
3	31:24
4	39:32
5	47:40
6	55:48
7	63:56

Definitions of Control Characters

Reference is regularly made to certain XGMII control characters signifying Start, Terminate, Error, and others. These control characters all have in common that the control line for that lane is 1 for the character and a certain data byte value. The relevant characters are defined in the *IEEE Std.* 802.3-2012 and are reproduced in Table 5-2 for reference.

Table 5-2: Partial List of XGMII Characters

Data (Hex)	Control	Name, Abbreviation
00 to FF	0	Data (D)
07	1	Idle (I)
FB	1	Start (S)
FD	1	Terminate (T)
FE	1	Error (E)

Interfacing to the Transmit Client Interface

Internal 64-bit Client-Side Interface

The timing of a data frame transmission through the internal 64-bit client-side interface is shown in Figure 5-1. The beginning of the data frame is shown by the presence of the Start character (the /S/ codegroup in lane 4 of Figure 5-1) followed by data characters in lanes 5, 6, and 7. Alternatively the start of the data frame can be marked by the occurrence of a Start character in lane 0, with the data characters in lanes 1 to 7.

When the frame is complete, it is completed by a Terminate character (the T in lane 1 of Figure 5-1). The Terminate character can occur in any lane; the remaining lanes are padded by XGMII idle characters.

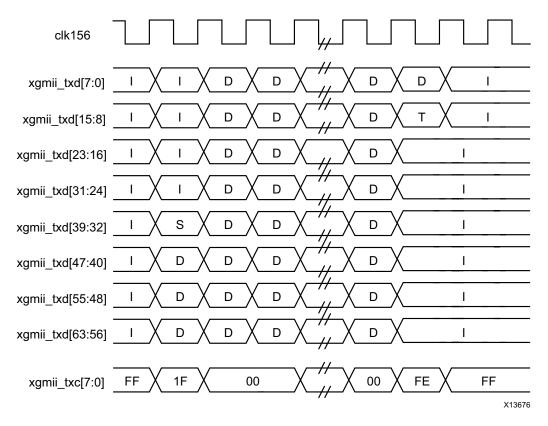


Figure 5-1: Normal Frame Transmission Across the Internal 64-bit Client-Side I/F

Figure 5-2 depicts a similar frame to that in Figure 5-1, with the exception that this frame is propagating an error. The error code is denoted by the letter E, with the relevant control bits set.

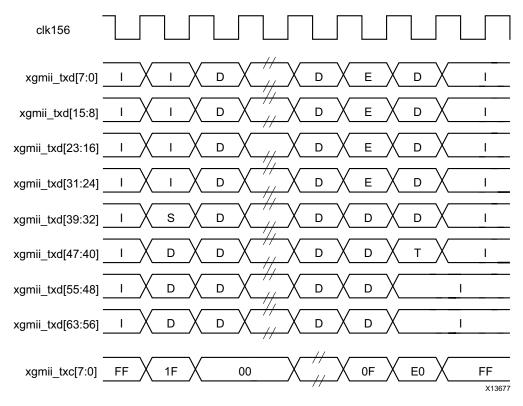


Figure 5-2: Frame Transmission with Error Across Internal 64-bit Client-Side I/F

Interfacing to the Receive Client Interface

Internal 64-bit Client-Side Interface

The timing of a normal inbound frame transfer is shown in Figure 5-3. As in the transmit case, the frame is delimited by a Start character (S) and by a Terminate character (T). The Start character in this implementation can occur in either lane 0 or in lane 4. The Terminate character, T, can occur in any lane.

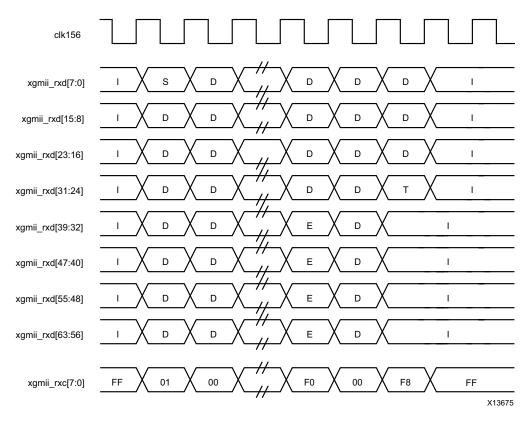


Figure 5-3: Frame Reception Across the Internal 64-bit Client Interface

Figure 5-4 shows an inbound frame of data propagating an error. In this instance, the error is propagated in lanes 4 to 7, shown by the letter E.

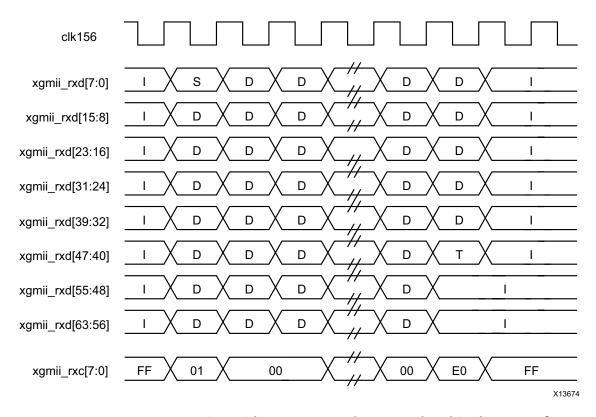


Figure 5-4: Frame Reception with Error Across the Internal 64-bit Client Interface

Configuration and Status Interfaces

This section describes the interfaces available for dynamically setting the configuration and obtaining the status of the XAUI core. There are two interfaces for configuration; depending on the core customization, only one is available in a particular core instance. The interfaces are:

- MDIO Interface
- Configuration and Status Vectors

In addition, there are output ports on the core signaling alignment and synchronization status. These ports are described in Debug Port.

MDIO Interface

The Management Data Input/Output (MDIO) interface is a simple, low-speed two-wire interface for management of the XAUI core consisting of a clock signal and a bidirectional data signal. It is defined in clause 45 of *IEEE Standard* 802.3-2012.

An MDIO bus in a system consists of a single Station Management (STA) master management entity and several MDIO Managed Device (MMD) slave entities. Figure 5-5 illustrates a typical system. All transactions are initiated by the Station Management Entity (STA) entity. The XAUI core implements an MMD.

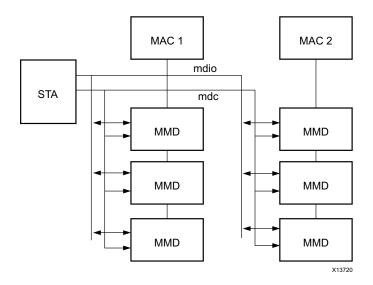


Figure 5-5: A Typical MDIO-Managed System

MDIO Ports

The core ports associated with MDIO are shown in Table 5-3.

Table 5-3: MDIO Management Interface Port Description

Signal Name	Direction	Description
mdc	IN	Management clock
mdio_in	IN	MDIO input
mdio_out	OUT	MDIO output
mdio_tri	OUT	MDIO 3-state. 1 disconnects the output driver from the MDIO bus.
type_sel[1:0]	IN	Type select
prtad[4:0]	IN	MDIO port address

If implemented, the MDIO interface is implemented as four unidirectional signals. These can be used to drive a 3-state buffer either in the FPGA SelectIO[™] interface buffer or in a separate device. Figure 5-6 illustrates the use of a Virtex®-7 FPGA SelectIO interface 3-state buffer as the bus interface.

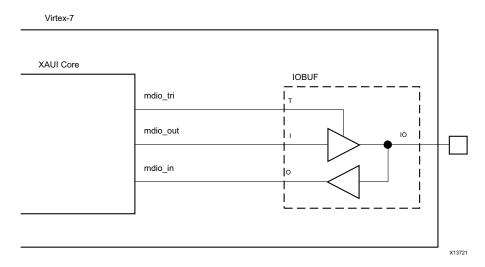


Figure 5-6: Using a SelectIO Interface 3-State Buffer to Drive MDIO

The type_sel port is registered into the core at FPGA configuration and core hard reset; changes after that time are ignored by the core. Table 5-4 shows the mapping of the type_sel setting to the implemented register map.

Table 5-4: Mapping of type_sel Port Settings to MDIO Register Type

type_sel setting	MDIO Register	Description
00 or 01	10GBASE-X PCS/PMA	When driving a 10GBASE-X PHY
10	Data Terminal Equipment (DTE) XGMII Extender Sublayer (XGXS)	When connected to a 10GMAC through XGMII
11	PHY XGXS	When connected to a PHY through XGMII

The prtad[4:0] port sets the port address of the core instance. Multiple instances of the same core can be supported on the same MDIO bus by setting prtad[4:0] to a unique value for each instance; the XAUI core ignores transactions with the PRTAD field set to a value other than that on its prtad[4:0] port.

MDIO Transactions

The MDIO interface should be driven from a STA master according to the protocol defined in *IEEE Std.* 802.3-2012. An outline of each transaction type is described in the following sections. In these sections, the following abbreviations apply:

PRE: preamble

ST: start

OP: operation code

PRTAD: port address

DEVAD: device address

TA: turnaround

Set Address Transaction

Figure 5-7 shows an Address transaction defined by OP=00. Set Address is used to set the internal 16-bit address register of the XAUI core for subsequent data transactions (called the "current address" in the following sections).

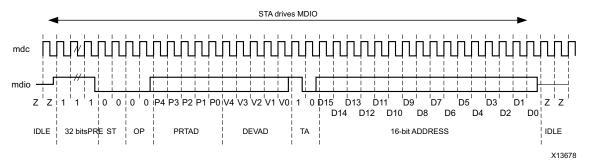


Figure 5-7: MDIO Set Address Transaction

Write Transaction

Figure 5-8 shows a Write transaction defined by OP=01. The XAUI core takes the 16-bit word in the data field and writes it to the register at the current address.

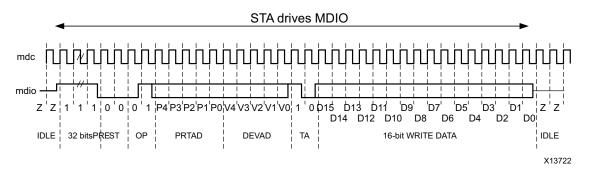


Figure 5-8: MDIO Write Transaction

Read Transaction

Figure 5-9 shows a Read transaction defined by OP=11. The XAUI core returns the 16-bit word from the register at the current address.

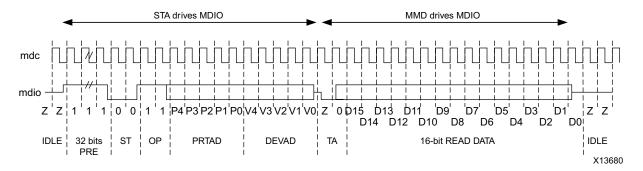


Figure 5-9: MDIO Read Transaction

Post-read-increment-address Transaction

Figure 5-10 shows a Post-read-increment-address transaction, defined by OP=10. The XAUI core returns the 16-bit word from the register at the current address then increments the current address. This allows sequential reading or writing by a STA master of a block of register addresses.

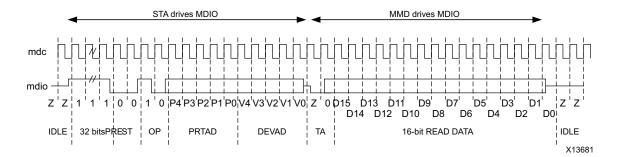


Figure 5-10: MDIO Read-and-increment Transaction

10GBASE-X PCS/PMA Register Map

When the core is configured as a 10GBASE-X Physical Coding Sublayer/Physical Medium Attachment (PCS/PMA), it occupies MDIO Device Addresses 1 and 3 in the MDIO register address map, as shown in Table 5-5.

Table 5-5: 10GBASE-X PCS/PMA MDIO Registers

Register Address	Register Name
1.0	Physical Medium Attachment/Physical Medium Dependent (PMA/PMD) Control 1
1.1	PMA/PMD Status 1
1.2,1.3	PMA/PMD Device Identifier
1.4	PMA/PMD Speed Ability
1.5, 1.6	PMA/PMD Devices in Package
1.7	10G PMA/PMD Control 2
1.8	10G PMA/PMD Status 2
1.9	Reserved
1.10	10G PMD Receive Signal OK
1.11 TO 1.13	Reserved
1.14, 1.15	PMA/PMD Package Identifier
1.16 to 1.65 535	Reserved
3.0	PCS Control 1
3.1	PCS Status 1
3.2, 3.3	PCS Device Identifier
3.4	PCS Speed Ability
3.5, 3.6	PCS Devices in Package
3.7	10G PCS Control 2
3.8	10G PCS Status 2
3.9 to 3.13	Reserved
3.14, 3.15	Package Identifier
3.16 to 3.23	Reserved
3.24	10GBASE-X PCS Status
3.25	10GBASE-X Test Control
3.26 to 3.65 535	Reserved

MDIO Register 1.0: PMA/PMD Control 1

Figure 5-11 shows the MDIO Register 1.0: PMA/PMD Control 1.

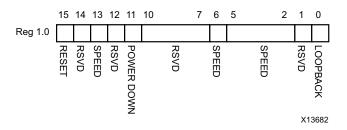


Figure 5-11: PMA/PMD Control 1 Register

Table 5-6 shows the PMA Control 1 register bit definitions.

Table 5-6: PMA/PMD Control 1 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
1.0.15	Reset	1 = Block reset 0 = Normal operation The XAUI block is reset when this bit is set to 1. It returns to 0 when the reset is complete. The soft_reset pin is connected to this bit. This can be connected to the reset of any other MMDs.	R/W Self-clearing	0
1.0.14	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	0
1.0.13	Speed Selection	The block always returns 1 for this bit and ignores writes.	R/O	1
1.0.12	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	0
1.0.11	Power down	1 = Power down mode 0 = Normal operation When set to 1, the serial transceivers are placed in a low-power state. Set to 0 to return to normal operation	R/W	0
1.0.10:7	Reserved	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
1.0.6	Speed Selection	The block always returns 1 for this bit and ignores writes.	R/O	1
1.0.5:2	Speed Selection	The block always returns 0s for these bits and ignores writes.	R/O	All 0s

Table 5-6: PMA/PMD Control 1 Register Bit Definitions (Cont'd)

Bit	Name	Description	Attributes	Default Value
1.0.1	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	All 0s
1.0.0	Loopback	 1 = Enable loopback mode 0 = Disable loopback mode The XAUI block loops the signal in the serial transceivers back into the receiver. 	R/W	0

MDIO Register 1.1: PMA/PMD Status 1

Figure 5-12 shows the MDIO Register 1.1: PMA/PMD Status 1.

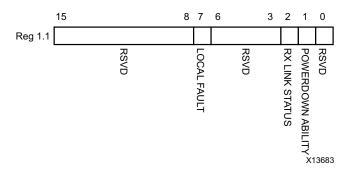


Figure 5-12: PMA/PMD Status 1 Register

Table 5-7 shows the PMA/PMD Status 1 register bit definitions.

Table 5-7: PMA/PMD Status 1 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
1.1.15:8	Reserved	The block always returns 0 for this bit.	R/O	0
1.1.7	Local Fault	The block always returns 0 for this bit.	R/O	0
1.1.6:3	Reserved	The block always returns 0 for this bit.	R/O	0
1.1.2	Receive Link Status	The block always returns 1 for this bit.	R/O	1
1.1.1	Power Down Ability	The block always returns 1 for this bit.	R/O	1
1.1.0	Reserved	The block always returns 0 for this bit.	R/O	0

MDIO Registers 1.2 and 1.3: PMA/PMD Device Identifier

Figure 5-13 shows the MDIO Registers 1.2 and 1.3: PMA/PMD Device Identifier.

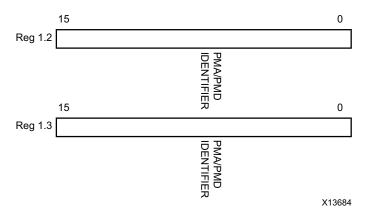


Figure 5-13: PMA/PMD Device Identifier Registers

Table 5-8 shows the PMA/PMD Device Identifier registers bit definitions.

Table 5-8: PMA/PMD Device Identifier Registers Bit Definitions

Bit	Name	Description	Attributes	Default Value
1.2.15:0	PMA/PMD Identifier	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
1.3.15:0	PMA/PMD Identifier	The block always returns 0 for these bits and ignores writes.	R/O	All 0s

MDIO Register 1.4: PMA/PMD Speed Ability

Figure 5-14 shows the MDIO Register 1.4: PMA/PMD Speed Ability.

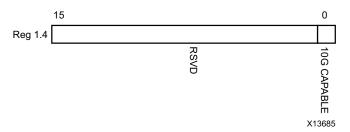


Figure 5-14: PMA/PMD Speed Ability Register

Table 5-9 shows the PMA/PMD Speed Ability register bit definitions.

Table 5-9: PMA/PMD Speed Ability Register Bit Definitions

Bit	Name	Description	Attribute	Default Value
1.4.15:1	Reserved	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
1.4.0	10G Capable	The block always returns 1 for this bit and ignores writes.	R/O	1

MDIO Registers 1.5 and 1.6: PMA/PMD Devices in Package

Figure 5-15 shows the MDIO Registers 1.5 and 1.6: PMA/PMD devices in package.

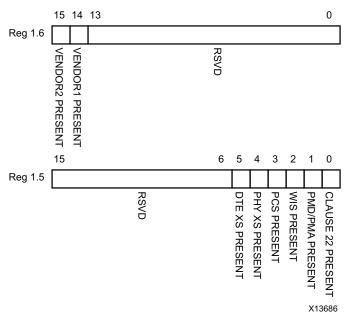


Figure 5-15: PMA/PMD Devices in Package Registers

Table 5-10 shows the PMA/PMD Device in Package registers bit definitions.

Table 5-10: PMA/PMD Devices in Package Registers Bit Definitions

Bit	Name	Description	Attributes	Default Value
1.6.15	Vendor- specific Device 2 Present	The block always returns 0 for this bit.	R/O	0
1.6.14	Vendor-specific Device 1 Present	The block always returns 0 for this bit.	R/O	0
1.6.13:0	Reserved	The block always returns 0 for these bits.	R/O	All 0s
1.5.15:6	Reserved	The block always returns 0 for these bits.	R/O	All 0s
1.5.5	DTE Extender Sublayer (XS) Present	The block always returns 0 for this bit.	R/O	0
1.5.4	PHY XS Present	The block always returns 0 for this bit.	R/O	0
1.5.3	PCS Present	The block always returns 1 for this bit.	R/O	1
1.5.2	WIS Present	The block always returns 0 for this bit.	R/O	0
1.5.1	PMA/PMD Present	The block always returns 1 for this bit.	R/O	1
1.5.0	Clause 22 Device Present	The block always returns 0 for this bit.	R/O	0

MDIO Register 1.7: 10G PMA/PMD Control 2

Figure 5-16 shows the MDIO Register 1.7: 10G PMA/PMD Control 2.

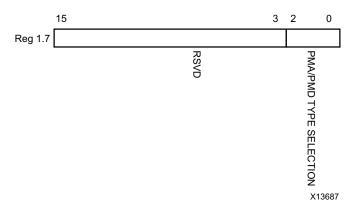


Figure 5-16: 10G PMA/PMD Control 2 Register

Table 5-11 shows the PMA/PMD control 2 register bit definitions.

Table 5-11: 10G PMA/PMD Control 2 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
1.7.15:3	Reserved	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
1.7.2:0	PMA/PMD Type Selection	The block always returns 100 for these bits and ignores writes. This corresponds to the 10GBASE-X PMA/PMD.	R/O	100

MDIO Register 1.8: 10G PMA/PMD Status 2

Figure 5-17 shows the MDIO Register 1.8: 10G PMA/PMD Status 2.

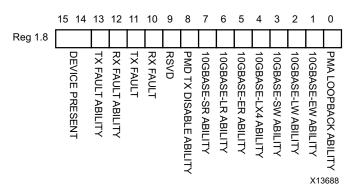


Figure 5-17: 10G PMA/PMD Status 2 Register

Table 5-12 shows the PMA/PMD status 2 register bit definitions.

Table 5-12: 10G PMA/PMD Status 2 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
1.8.15:14	Device Present	The block always returns 10 for these bits.	R/O	10
1.8.13	Transmit Local Fault Ability	The block always returns 0 for this bit.	R/O	0
1.8.12	Receive Local Fault Ability	The block always returns 0 for this bit.	R/O	0
1.8.11	Transmit Fault	The block always returns 0 for this bit.	R/O	0
1.8.10	Receive Fault	The block always returns 0 for this bit.	R/O	0
1.8.9	Reserved	The block always returns 0 for this bit.	R/O	0
1.8.8	PMD Transmit Disable Ability	The block always returns 0 for this bit.	R/O	0
1.8.7	10GBASE-SR Ability	The block always returns 0 for this bit.	R/O	0
1.8.6	10GBASE-LR Ability	The block always returns 0 for this bit.	R/O	0
1.8.5	10GBASE-ER Ability	The block always returns 0 for this bit.	R/O	0
1.8.4	10GBASE-LX4 Ability	The block always returns 1 for this bit.	R/O	1
1.8.3	10GBASE-SW Ability	The block always returns 0 for this bit.	R/O	0

Table 5-12: 10G PMA/PMD Status 2 Register Bit Definitions (Cont'd)

Bit	Name	Description	Attributes	Default Value
1.8.2	10GBASE-LW Ability	The block always returns 0 for this bit.	R/O	0
1.8.1	10GBASE-EW Ability	The block always returns 0 for this bit.	R/O	0
1.8.0	PMA Loopback Ability	The block always returns 1 for this bit.	R/O	1

MDIO Register 1.10: 10G PMD Signal Receive OK

Figure 5-18 shows the MDIO 1.10 register: 10G PMD signal receive OK.

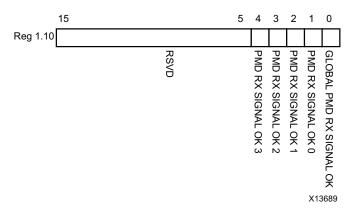


Figure 5-18: 10G PMD Signal Receive OK Register

Table 5-13 shows the 10G PMD Signal Receive OK register bit definitions.

Table 5-13: 10G PMD Signal Receive OK Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
1.10.15:5	Reserved	The block always returns 0s for these bits.	R/O	All 0s
1.10.4	PMD Receive Signal OK 3	1 = Signal OK on receive Lane 3 0 = Signal not OK on receive Lane 3 This is the value of the signal_detect[3] port.	R/O	-
1.10.3	PMD Receive Signal OK 2	1 = Signal OK on receive Lane 2 0 = Signal not OK on receive Lane 2 This is the value of the signal_detect[2] port.	R/O	-
1.10.2	PMD Receive Signal OK 1	1 = Signal OK on receive Lane 1 0 = Signal not OK on receive Lane 1 This is the value of the signal_detect[1] port.	R/O	-
1.10.1	PMD Receive Signal OK 0	1 = Signal OK on receive Lane 0 0 = Signal not OK on receive Lane 0 This is the value of the signal_detect[0] port.	R/O	-
1.10.0	Global PMD Receive Signal OK	1 = Signal OK on all receive lanes 0 = Signal not OK on all receive lanes	R/O	-

MDIO Registers 1.14 and 1.15: PMA/PMD Package Identifier

Figure 5-19 shows the MDIO registers 1.14 and 1.15: PMA/PMD package identifier register.

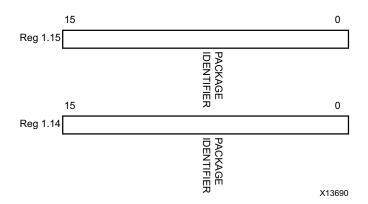


Figure 5-19: PMA/PMD Package Identifier Registers

Table 5-14 shows the PMA/PMD Package Identifier registers bit definitions.

Table 5-14: PMA/PMD Package Identifier Registers Bit Definitions

Bit	Name	Description	Attributes	Default Value
1.15.15:0	PMA/PMD Package Identifier	The block always returns 0 for these bits.	R/O	All 0s
1.14.15:0	PMA/PMD Package Identifier	The block always returns 0 for these bits.	R/O	All 0s

MDIO Register 3.0: PCS Control 1

Figure 5-20 shows the MDIO Register 3.0: PCS Control 1.

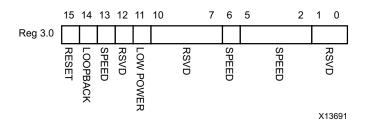
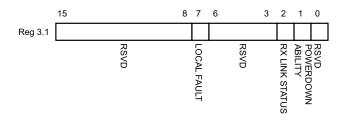


Figure 5-20: PCS Control 1 Register

Table 5-15 shows the PCS Control 1 register bit definitions.


Table 5-15: PCS Control 1 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
3.0.15	Reset	1 = Block reset 0 = Normal operation The XAUI block is reset when this bit is set to 1. It returns to 0 when the reset is complete.	R/W Self-clearing	0
3.0.14	10GBASE-R Loopback	The block always returns 0 for this bit and ignores writes.	R/O	0
3.0.13	Speed Selection	The block always returns 1 for this bit and ignores writes.	R/O	1
3.0.12	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	0
3.0.11	Power down	1 = Power down mode 0 = Normal operation When set to 1, the serial transceivers are placed in a low-power state. Set to 0 to return to normal operation.	R/W	0
3.0.10:7	Reserved	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
3.0.6	Speed Selection	The block always returns 1 for this bit and ignores writes.	R/O	1
3.0.5:2	Speed Selection	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
3.0.1:0	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	All 0s

MDIO Register 3.1: PCS Status 1

Figure 5-21 shows the MDIO Register 3.1: PCS Status 1.

X13692

Figure 5-21: PCS Status 1 Register

Table 5-16 show the PCS 1 register bit definitions.

Table 5-16: PCS Status 1 Register Bit Definition

Bit	Name	Description	Attributes	Default Value
3.1.15:8	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
3.1.7	Local Fault	1 = Local fault detected 0 = No local fault detected This bit is set to 1 whenever either of the bits 3.8.11, 3.8.10 are set to 1.	R/O	-
3.1.6:3	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
3.1.2	PCS Receive Link Status	1 = The PCS receive link is up 0 = The PCS receive link is down This is a latching Low version of bit 3.24.12. Latches 0 if Link Status goes down. Clears to current Link Status on read.	R/O Self-setting	-
3.1.1	Power Down Ability	The block always returns 1 for this bit.	R/O	1
3.1.0	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	0

MDIO Registers 3.2 and 3.3: PCS Device Identifier

Figure 5-22 shows the MDIO Registers 3.2 and 3.3: PCS Device Identifier.

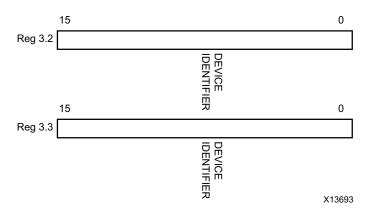


Figure 5-22: PCS Device Identifier Registers

Table 5-17 shows the PCS Device Identifier registers bit definitions.

Table 5-17: PCS Device Identifier Registers Bit Definition

Bit	Name	Description	Attributes	Default Value
3.2.15:0	PCS Identifier	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
3.3.15:0	PCS Identifier	The block always returns 0 for these bits and ignores writes.	R/O	All 0s

MDIO Register 3.4: PCS Speed Ability

Figure 5-23 shows the MDIO Register 3.4: PCS Speed Ability.

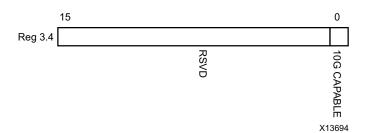


Figure 5-23: PCS Speed Ability Register

Table 5-18 shows the PCS Speed Ability register bit definitions.

Table 5-18: PCS Speed Ability Register Bit Definition

Bit	Name	Description	Attribute	Default Value
3.4.15:1	Reserved	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
3.4.0	10G Capable	The block always returns 1 for this bit and ignores writes.	R/O	1

MDIO Registers 3.5 and 3.6: PCS Devices in Package

Figure 5-24 shows the MDIO Registers 3.5 and 3.6: PCS Devices in Package.

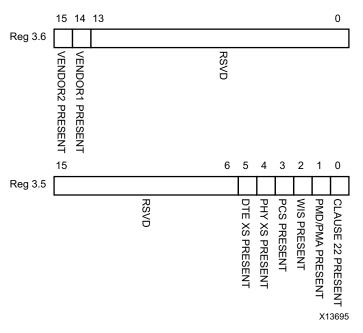


Figure 5-24: PCS Devices in Package Registers

Table 5-19 shows the PCS Devices in Package registers bit definitions.

Table 5-19: PCS Devices in Package Registers Bit Definitions

Bit	Name	Description	Attributes	Default Value
3.6.15	Vendor-specific Device 2 Present	The block always returns 0 for this bit.	R/O	0
3.6.14	Vendor-specific Device 1 Present	The block always returns 0 for this bit.	R/O	0
3.6.13:0	Reserved	The block always returns 0 for these bits.	R/O	All 0s
3.5.15:6	Reserved	The block always returns 0 for these bits.	R/O	All 0s
3.5.5	PHY XS Present	The block always returns 0 for this bit.	R/O	0
3.5.4	PHY XS Present	The block always returns 0 for this bit.	R/O	0
3.5.3	PCS Present	The block always returns 1 for this bit.	R/O	1
3.5.2	WIS Present	The block always returns 0 for this bit.	R/O	0
3.5.1	PMA/PMD Present	The block always returns 1 for this bit.	R/O	1
3.5.0	Clause 22 device present	The block always returns 0 for this bit.	R/O	0

MDIO Register 3.7: 10G PCS Control 2

Figure 5-25 shows the MDIO Register 3.7: 10G PCS Control 2.

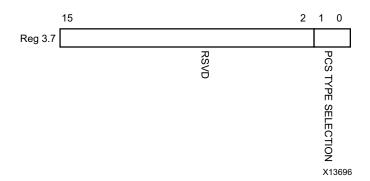


Figure 5-25: 10G PCS Control 2 Register

Table 5-20 shows the 10 G PCS Control 2 register bit definitions.

Table 5-20: 10G PCS Control 2 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
3.7.15:2	Reserved	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
3.7.1:0	PCS Type Selection	The block always returns 01 for these bits and ignores writes.	R/O	01

MDIO Register 3.8: 10G PCS Status 2

Figure 5-26 shows the MDIO Register 3.8: 10G PCS Status 2.

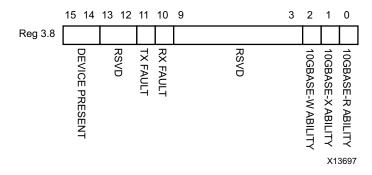


Figure 5-26: 10G PCS Status 2 Register

Table 5-21 shows the 10G PCS Status 2 register bit definitions.

Table 5-21: 10G PCS Status 2 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
3.8.15:14	Device present	The block always returns 10.	R/O	10
3.8.13:12	Reserved	The block always returns 0 for these bits.	R/O	All 0s
3.8.11	Transmit local fault	1 = Fault condition on transmit path0 = No fault condition on transmit path	R/O Latching High. Self clears after a read unless the fault is still present.	-
3.8.10	Receive local fault	1 = Fault condition on receive path0 = No fault condition on receive path	R/O Latching High. Self clears after a read unless the fault is still present.	-
3.8.9:3	Reserved	The block always returns 0 for these bits.	R/O	All 0s
3.8.2	10GBASE-W Capable	The block always returns 0 for this bit.	R/O	0
3.8.1	10GBASE-X Capable	The block always returns 1 for this bit.	R/O	1
3.8.0	10GBASE-R Capable	The block always returns 0 for this bit.	R/O	0

MDIO Registers 3.14 and 3.15: PCS Package Identifier

Figure 5-27 shows the MDIO Registers 3.14 and 3.15: PCS Package Identifier.

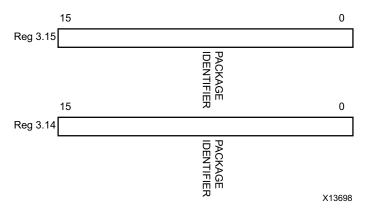


Figure 5-27: Package Identifier Registers

Table 5-22 shows the PCS Package Identifier registers bit definitions.

Table 5-22: PCS Package Identifier Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
3.14.15:0	Package Identifier	The block always returns 0 for these bits.	R/O	All 0s
3.15.15:0	Package Identifier	The block always returns 0 for these bits.	R/O	All 0s

MDIO Register 3.24: 10GBASE-X Status

Figure 5-28 shows the MDIO Register 3.24: 10GBase-X Status.

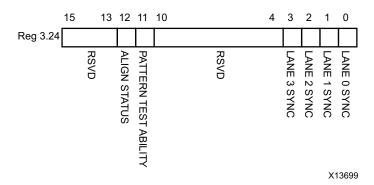


Figure 5-28: 10GBASE-X Status Register

Table 5-23 shows the 10GBase-X Status register bit definitions.

Table 5-23: 10GBASE-X Status Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
3.24.15:13	Reserved	The block always returns 0 for these bits.	R/O	All 0s
3.24.12	10GBASE-X Lane Alignment Status	1 = 10GBASE-X receive lanes aligned; 0 = 10GBASE-X receive lanes not aligned.	RO	-
3.24.11	Pattern Testing Ability	The block always returns 1 for this bit.	R/O	1
3.24.10:4	Reserved	The block always returns 0 for these bits.	R/O	All 0s
3.24.3	Lane 3 Sync	1 = Lane 3 is synchronized; 0 = Lane 3 is not synchronized.	R/O	-
3.24.2	Lane 2 Sync	1 =Lane 2 is synchronized; 0 =Lane 2 is not synchronized.	R/O	-
3.24.1	Lane 1 Sync	1 = Lane 1 is synchronized; 0 = Lane 1 is not synchronized.	R/O	-
3.24.0	Lane 0 Sync	1 = Lane 0 is synchronized; 0 = Lane 0 is not synchronized.	R/O	-

MDIO Register 3.25: 10GBASE-X Test Control

Figure 5-29 shows the MDIO Register 3.25: 10GBase-X Test Control.

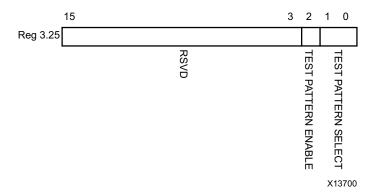


Figure 5-29: Test Control Register

Table 5-24 shows the 10GBase-X Test Control register bit definitions.

Table 5-24: 10GBASE-X Test Control Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
3.25.15:3	Reserved	The block always returns 0 for these bits.	R/O	All 0s
3.25.2	Transmit Test Pattern Enable	1 = Transmit test pattern enable0 = Transmit test pattern disabled	R/W	0
3.25.1:0	Test Pattern Select	11 = Reserved 10 = Mixed frequency test pattern 01 = Low frequency test pattern 00 = High frequency test pattern	R/W	00

DTE XS MDIO Register Map

When the core is configured as a DTE XGXS, it occupies MDIO Device Address 5 in the MDIO register address map (Table 5-25).

Table 5-25: DTE XS MDIO Registers

Register Address	Register Name
5.0	DTE XS Control 1
5.1	DTE XS Status 1
5.2, 5.3	DTE XS Device Identifier
5.4	DTE XS Speed Ability
5.5, 5.6	DTE XS Devices in Package
5.7	Reserved
5.8	DTE XS Status 2
5.9 to 5.13	Reserved
5.14, 5.15	DTE XS Package Identifier
5.16 to 5.23	Reserved
5.24	10G DTE XGXS Lane Status
5.25	10G DTE XGXS Test Control

MDIO Register 5.0:DTE XS Control 1

Figure 5-30 shows the MDIO Register 5.0: DTE XS Control 1.

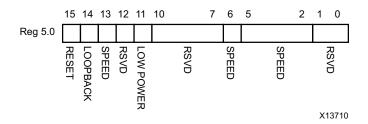


Figure 5-30: DTE XS Control 1 Register

Table 5-26 shows the DTE XS Control 1 register bit definitions.

Table 5-26: DTE XS Control 1 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
5.0.15	Reset	1 = Block reset 0 = Normal operation The XAUI block is reset when this bit is set to 1. It returns to 0 when the reset is complete.	R/W Self-clearing	0
5.0.14	Loopback	 1 = Enable loopback mode 0 = Disable loopback mode The XAUI block loops the signal in the serial transceivers back into the receiver. 	R/W	0
5.0.13	Speed Selection	The block always returns 1 for this bit and ignores writes.	R/O	1
5.0.12	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	0
5.0.11	Power down	1 = Power down mode 0 = Normal operation When set to 1, the serial transceivers are placed in a low-power state. Set to 0 to return to normal operation	R/W	0
5.0.10:7	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
5.0.6	Speed Selection	The block always returns 1 for this bit and ignores writes.	R/O	1
5.0.5:2	Speed Selection	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
5.0.1:0	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s

MDIO Register 5.1: DTE XS Status 1

Figure 5-31 shows the MDIO Register 5.1: DTE XS Status 1.

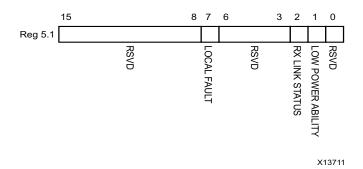


Figure 5-31: DTE XS Status 1 Register

Table 5-27 shows the DET XS Status 1 register bit definitions.

Table 5-27: DTE XS Status 1 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
5.1.15:8	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
5.1.7	Local Fault	1 = Local fault detected 0 = No Local Fault detected This bit is set to 1 whenever either of the bits 5.8.11, 5.8.10 are set to 1.	R/O	-
5.1.6:3	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
5.1.2	DTE XS Receive Link Status	1 = The DTE XS receive link is up. 0 = The DTE XS receive link is down. This is a latching Low version of bit 5.24.12. Latches 0 if Link Status goes down. Clears to current Link Status on read.	R/O Self-setting	-
5.1.1	Power Down Ability	The block always returns 1 for this bit.	R/O	1
5.1.0	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	0

MDIO Registers 5.2 and 5.3: DTE XS Device Identifier

Figure 5-32 shows the MDIO Registers 5.2 and 5.3: DTE XS Device Identifier.

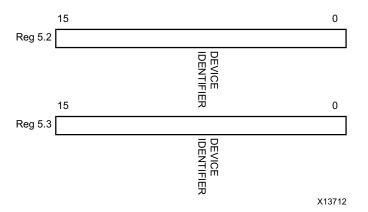


Figure 5-32: DTE XS Device Identifier Registers

Table 5-28 shows the DTE XS Device Identifier registers bit definitions.

Table 5-28: DTE XS Device Identifier Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
5.2.15:0	DTE XS Identifier	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
5.3.15:0	DTE XS Identifier	The block always returns 0 for these bits and ignores writes.	R/O	All 0s

MDIO Register 5.4: DTE XS Speed Ability

Figure 5-33 shows the MDIO Register 5.4: DTE Speed Ability.

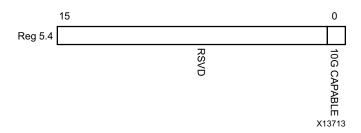


Figure 5-33: DTE XS Speed Ability Register

Table 5-29 shows the DTE XS Speed Ability register bit definitions.

Table 5-29: DTE XS Speed Ability Register Bit Definitions

Bit	Name	Description	Attribute	Default Value
5.4.15:1	Reserved	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
5.4.0	10G Capable	The block always returns 1 for this bit and ignores writes.	R/O	1

MDIO Registers 5.5 and 5.6: DTE XS Devices in Package

Figure 5-33 shows the MDIO Registers 5.5 and 5.6: DTE XS Devices in Package.

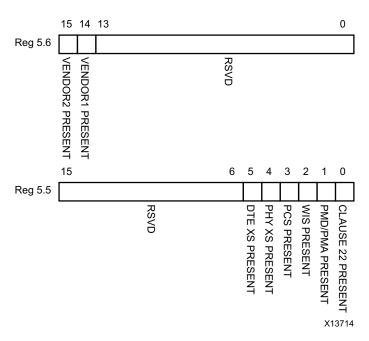


Figure 5-34: DTE XS Devices in Package Register

Table 5-30 shows the DTE XS Devices in Package registers bit definitions.

Table 5-30: DTE XS Devices in Package Registers Bit Definitions

Bit	Name	Description	Attributes	Default Value
5.6.15	Vendor-specific Device 2 Present	The block always returns 0 for this bit.	R/O	0
5.6.14	Vendor-specific Device 1 Present	The block always returns 0 for this bit.	R/O	0
5.6.13:0	Reserved	The block always returns 0 for these bits.	R/O	All 0s
5.6.15:6	Reserved	The block always returns 0 for these bits.	R/O	All 0s
5.5.5	DTE XS Present	The block always returns 1 for this bit.	R/O	1
5.5.4	PHY XS Present	The block always returns 0 for this bit.	R/O	0
5.5.3	PCS Present	The block always returns 0 for this bit.	R/O	0
5.5.2	WIS Present	The block always returns 0 for this bit.	R/O	0
5.5.1	PMA/PMD Present	The block always returns 0 for this bit.	R/O	0
5.5.0	Clause 22 Device Present	The block always returns 0 for this bit.	R/O	0

MDIO Register 5.8: DTE XS Status 2

Figure 5-35 shows the MDIO Register 5.8: DTE XS Status 2.

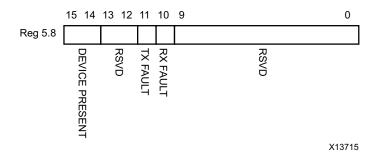


Figure 5-35: DTE XS Status 2 Register

Table 5-31 show the DTE XS Status 2 register bits definitions.

Table 5-31: DTE XS Status 2 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
5.8.15:14	Device Present	The block always returns 10.	R/O	10
5.8.13:12	Reserved	The block always returns 0 for these bits.	R/O	All 0s
5.8.11	Transmit Local Fault	1 = Fault condition on transmit path0 = No fault condition on transmit path	R/O Latching High. Self clears after a read unless the fault is still present.	-
5.8.10	Receive Local Fault	1 = Fault condition on receive path0 = No fault condition on receive path	R/O Latching High. Self clears after a read unless the fault is still present.	-
5.8.9:0	Reserved	The block always returns 0 for these bits.	R/O	All 0s

MDIO Registers 5.14 and 5.15: DTE XS Package Identifier

Figure 5-35 shows the MDIO Registers 5.14 and 5.15: DTE XS Package Identifier.

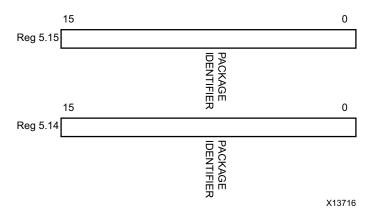


Figure 5-36: DTE XS Package Identifier Registers

Table 5-32 shows the DTE XS Package Identifier registers bit definitions.

Table 5-32: DTE XS Package Identifier Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
5.14.15:0	DTE XS Package Identifier	The block always returns 0 for these bits.	R/O	All 0s
5.15.15:0	DTE XS Package Identifier	The block always returns 0 for these bits.	R/O	All 0s

Test Patterns

The XAUI core is capable of sending test patterns for system debug. These patterns are defined in Annex 48A of *IEEE Std. 802.3-2012* and transmission of these patterns is controlled by the MDIO Test Control Registers.

There are three types of pattern available:

- High frequency test pattern of "1010101010...." at each device-specific transceiver output
- Low frequency test pattern of "111110000011111000001111100000...." at each device-specific transceiver output
- mixed frequency test pattern of "111110101100000101001111101011000001010..." at each device-specific transceiver output.

MDIO Register 5.24: DTE XS Lane Status

Figure 5-37 shows the MDIO Register 5.24: DTE XS Lane Status.

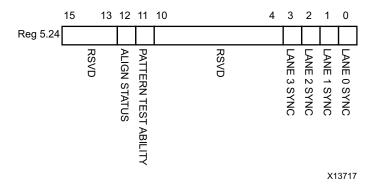


Figure 5-37: DTE XS Lane Status Register

Table 5-33 shows the DTE XS Lane Status register bit definitions.

Table 5-33: DTE XS Lane Status Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
5.24.15:13	Reserved	The block always returns 0 for these bits.	R/O	All 0s
5.24.12	DTE XGXS Lane Alignment Status	1 = DTE XGXS receive lanes aligned 0 = DTE XGXS receive lanes not aligned	R/O	-
5.24.11	Pattern testing ability	The block always returns 1 for this bit.	R/O	1
5.24.10:4	Reserved	The block always returns 0 for these bits.	R/O	All 0s
5.24.3	Lane 3 Sync	1 = Lane 3 is synchronized;0 = Lane 3 is not synchronized.	R/O	-
5.24.2	Lane 2 Sync	1 = Lane 2 is synchronized; 0 = Lane 2 is not synchronized.	R/O	-
5.24.1	Lane 1 Sync	1 = Lane 1 is synchronized; 0 = Lane 1 is not synchronized.	R/O	-
5.24.0	Lane 0 Sync	1 = Lane 0 is synchronized; 0 = Lane 0 is not synchronized.	R/O	-

MDIO Register 5.25: 10G DTE XGXS Test Control

Figure 5-38 shows the MDIO Register 5.25: 10G DTE XGXS Test Control.

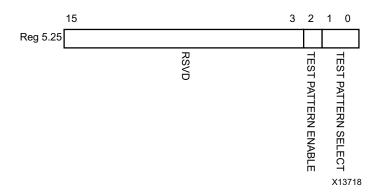


Figure 5-38: 10G DTE XGXS Test Control Register

Table 5-34 shows the 10G DTE XGXS Test Control register bit definitions.

Table 5-34: 10G DTE XGXS Test Control Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
5.25.15:3	Reserved	The block always returns 0 for these bits.	R/O	All 0s
5.25.2	Transmit Test Pattern Enable	1 = Transmit test pattern enable0 = Transmit test pattern disabled	R/W	0
5.25.1:0	Test Pattern Select	11 = Reserved 10 = Mixed frequency test pattern 01 = Low frequency test pattern 00 = High frequency test pattern	R/W	00

PHY XS MDIO Register Map

When the core is configured as a PHY XGXS, it occupies MDIO Device Address 4 in the MDIO register address map (Table 5-35).

Table 5-35: PHY XS MDIO Registers

Register Address	Register Name
4.0	PHY XS Control 1
4.1	PHY XS Status 1
4.2, 4.3	Device Identifier
4.4	PHY XS Speed Ability
4.5, 4.6	Devices in Package
4.7	Reserved
4.8	PHY XS Status 2
4.9 to 4.13	Reserved
4.14, 4.15	Package Identifier
4.16 to 4.23	Reserved
4.24	10G PHY XGXS Lane Status
4.25	10G PHY XGXS Test Control

MDIO Register 4.0: PHY XS Control 1

Figure 5-39 shows the MDIO Register 4.0: PHY XS Control 1.

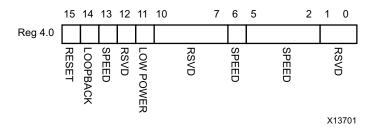


Figure 5-39: PHY XS Control 1 Register

Table 5-36 shows the PHY XS Control 1 register bit definitions.

Table 5-36: PHY XS Control 1 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
4.0.15	Reset	1 = Block reset 0 = Normal operation The XAUI block is reset when this bit is set to 1. It returns to 0 when the reset is complete.	R/W Self-clearing	0
4.0.14	Loopback	1 = Enable loopback mode 0 = Disable loopback mode The XAUI block loops the signal in the serial transceivers back into the receiver.	R/W	0
4.0.13	Speed Selection	The block always returns 1 for this bit and ignores writes.	R/O	1
4.0.12	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	0
4.0.11	Power down	1 = Power down mode 0 = Normal operation When set to 1, the serial transceivers are placed in a low-power state. Set to 0 to return to normal operation	R/W	0
4.0.10:7	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
4.0.6	Speed Selection	The block always returns 1 for this bit and ignores writes.	R/O	1
4.0.5:2	Speed Selection	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
4.0.1:0	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s

MDIO Register 4.1: PHY XS Status 1

Figure 5-40 shows the MDIO Register 4.1: PHY XS Status 1.

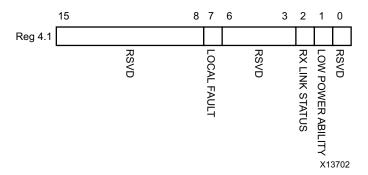


Figure 5-40: PHY XS Status 1 Register

Table 5-37 shows the PHY XS Status 1 register bit definitions.

Table 5-37: PHY XS Status 1 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
4.1.15:8	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
4.1.7	Local Fault	1 = Local fault detected 0 = No Local Fault detected This bit is set to 1 whenever either of the bits 4.8.11, 4.8.10 are set to 1.	R/O	-
4.1.6:3	Reserved	The block always returns 0s for these bits and ignores writes.	R/O	All 0s
4.1.2	PHYXS Receive Link Status	1 = The PHY XS receive link is up. 0 = The PHY XS receive link is down. This is a latching Low version of bit 4.24.12. Latches 0 if Link Status goes down. Clears to current Link Status on read.	R/O Self-setting	-
4.1.1	Power Down Ability	The block always returns 1 for this bit.	R/O	1
4.1.0	Reserved	The block always returns 0 for this bit and ignores writes.	R/O	0

MDIO Registers 4.2 and 4.3: PHY XS Device Identifier

Figure 5-41 shows the MDIO Registers 4.2 and 4.3: PHY XS Device Identifier.

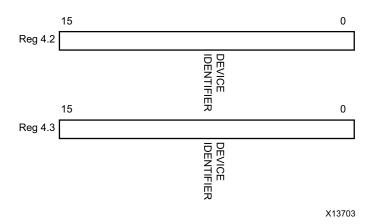


Figure 5-41: PHY XS Device Identifier Registers

Table 5-38 shows the PHY XS Devices Identifier registers bit definitions.

Table 5-38: PHY XS Device Identifier Registers Bit Definitions

Bit	Name	Description	Attributes	Default Value
4.2.15:0	PHY XS Identifier	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
4.3.15:0	PHY XS Identifier	The block always returns 0 for these bits and ignores writes.	R/O	All 0s

88

MDIO Register 4.4: PHY XS Speed Ability

Figure 5-42 shows the MDIO Register 4.4: PHY XS Speed Ability.

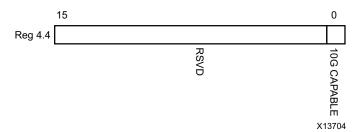


Figure 5-42: PHY XS Speed Ability Register

Table 5-39 shows the PHY XS Speed Ability register bit definitions.

Table 5-39: PHY XS Speed Ability Register Bit Definitions

Bit	Name	Description	Attribute	Default Value
4.4.15:1	Reserved	The block always returns 0 for these bits and ignores writes.	R/O	All 0s
4.4.0	10G Capable	The block always returns 1 for this bit and ignores writes.	R/O	1

MDIO Registers 4.5 and 4.6: PHY XS Devices in Package

Figure 5-43 shows the MDIO Registers 4.5 and 4.6: PHY XS Devices in Package.

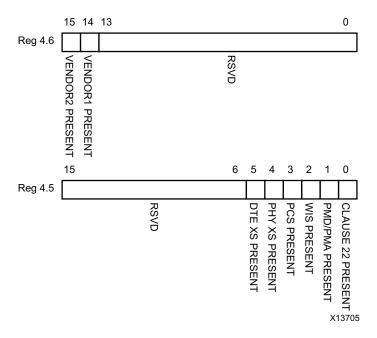


Figure 5-43: PHY XS Devices in Package Registers

Table 5-40 shows the PHY XS Devices in Package registers bit definitions.

Table 5-40: PHY XS Devices in Package Registers Bit Definitions

Bit	Name	Description	Attributes	Default Value
4.6.15	Vendor-specific Device 2 present	The block always returns 0 for this bit.	R/O	0
4.6.14	Vendor-specific Device 1 present	The block always returns 0 for this bit.	R/O	0
4.6.13:0	Reserved	The block always returns 0 for these bits.	R/O	All 0s
4.5.15:6	Reserved	The block always returns 0 for these bits.	R/O	All 0s
4.5.5	DTE XS Present	The block always returns 0 for this bit.	R/O	0
4.5.4	PHY XS Present	The block always returns 1 for this bit.	R/O	1
4.5.3	PCS Present	The block always returns 0 for this bit.	R/O	0
4.5.2	WIS Present	The block always returns 0 for this bit.	R/O	0
4.5.1	PMA/PMD Present	The block always returns 0 for this bit.	R/O	0
4.5.0	Clause 22 device present	The block always returns 0 for this bit.	R/O	0

MDIO Register 4.8: PHY XS Status 2

Figure 5-44 shows the MDIO Register 4.8: PHY XS Status 2.

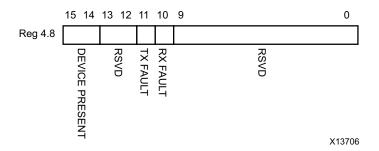


Figure 5-44: PHY XS Status 2 Register

Table 5-41 shows the PHY XS Status 2 register bit definitions.

Table 5-41: PHY XS Status 2 Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
4.8.15:14	Device Present	The block always returns 10.	R/O	10
4.8.13:12	Reserved	The block always returns 0 for these bits.	R/O	All 0s
4.8.11	Transmit Local Fault	1 = Fault condition on transmit path 0 = No fault condition on transmit path	R/O Latching High. Self clears after a read unless the fault is still present.	-
4.8.10	Receive local fault	1 = Fault condition on receive path0 = No fault condition on receive path	R/O Latching High. Self clears after a read unless the fault is still present.	-
4.8.9:0	Reserved	The block always returns 0 for these bits.	R/O	All 0s

MDIO Registers 4.14 and 4.15: PHY XS Package Identifier

Figure 5-45 shows the MDIO 4.14 and 4.15 Registers: PHY XS Package Identifier.

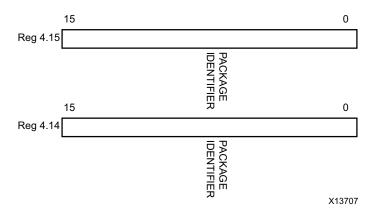


Figure 5-45: PHY XS Package Identifier Registers

Table 5-42 shows the Package Identifier registers bit definitions.

Table 5-42: Package Identifier Registers Bit Definitions

Bit	Name	Description	Attributes	Default Value
4.15.15:0	PHY XS Package Identifier	The block always returns 0 for these bits.	R/O	All 0s
4.14.15:0	PHY XS Package Identifier	The block always returns 0 for these bits.	R/O	All 0s

MDIO Register 4.24: 10G PHY XGXS Lane Status

Figure 5-46 shows the MDIO Register 4.24: 10G XGXS Lane Status.

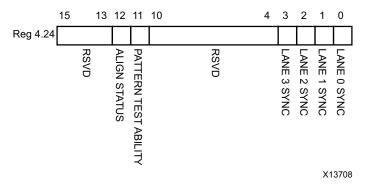


Figure 5-46: 10G PHY XGXS Lane Status Register

Table 5-43 shows the 10G PHY XGXS Lane register bit definitions.

Table 5-43: 10G PHY XGXS Lane Status Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
4.24.15:13	Reserved	The block always returns 0 for these bits.	R/O	All 0s
4.24.12	PHY XGXS Lane Alignment Status	1 = PHY XGXS receive lanes aligned; 0 = PHY XGXS receive lanes not aligned.	RO	-
4.24.11	Pattern Testing Ability	The block always returns 1 for this bit.	R/O	1
4.24.10:4	Reserved	The block always returns 0 for these bits.	R/O	All 0s
4.24.3	Lane 3 Sync	1 = Lane 3 is synchronized; 0 = Lane 3 is not synchronized.	R/O	-
4.24.2	Lane 2 Sync	1 = Lane 2 is synchronized; 0 = Lane 2 is not synchronized.	R/O	-
4.24.1	Lane 1 Sync	1 = Lane 1 is synchronized; 0 = Lane 1 is not synchronized.	R/O	-
4.24.0	Lane 0 Sync	1 = Lane 0 is synchronized; 0 = Lane 0 is not synchronized.	R/O	-

MDIO Register 4.25: 10G PHY XGXS Test Control

Figure 5-47 shows the MDIO Register 4.25: 10G XGXS Test Control.

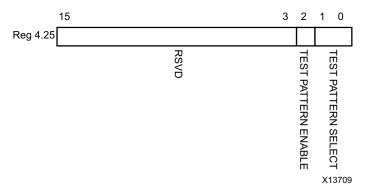


Figure 5-47: 10G PHY XGXS Test Control Register

Table 5-44 shows the 10G PHY XGXS Test Control register bit definitions.

Table 5-44: 10G PHY XGXS Test Control Register Bit Definitions

Bit	Name	Description	Attributes	Default Value
4.25.15:3	Reserved	The block always returns 0 for these bits.	R/O	All 0s
4.25.2	Transmit Test Pattern Enable	1 = Transmit test pattern enable0 = Transmit test pattern disabled	R/W	0
4.25.1:0	Test Pattern Select	11 = Reserved 10 = Mixed frequency test pattern 01 = Low frequency test pattern 00 = High frequency test pattern	R/W	00

Configuration and Status Vectors

If the XAUI core is generated without an MDIO interface, the key configuration and status information is carried on simple bit vectors, which are:

- configuration_vector[6:0]
- status_vector[7:0]

Table 5-45 shows the Configuration Vector bit definitions.

Table 5-45: Configuration Vector Bit Definitions

Bit	Name	Description
0	Loopback	Sets serial loopback in the device-specific transceivers. See bit 5.0.14 in Table 5-26.
1	Power Down	Sets the device-specific transceivers into power down mode. See bit 5.0.11 in Table 5-26.
2	Reset Local Fault	Clears both TX Local Fault and RX Local Fault bits (status_vector[0] and status_vector[1]). See Table 5-46. This bit should be driven by a register on the same clock domain as the XAUI core.
3	Reset Rx Link Status	Sets the RX Link Status bit (status_vector[7]). See Table 5-46. This bit should be driven by a register on the same clock domain as the XAUI core.
4	Test Enable	Enables transmit test pattern generation. See bit 5.25.2 in Table 5-34.
6:5	Test Select(1:0)	Selects the test pattern. See bits 5.25.1:0 in Table 5-34.

Table 5-46 shows the Status Vector bit definitions.

Table 5-46: Status Vector Bit Definitions

Bit	Name	Description
0	Tx Local Fault	1 if there is a fault in the transmit path, otherwise 0; see bit 5.8.11 in Table 5-31. Latches High. Cleared by rising edge on configuration_vector[2].
1	Rx Local Fault	1 if there is a fault in the receive path, otherwise 0; see bit 5.8.10 in Table 5-31. Latches High. Cleared by rising edge on configuration_vector[2].
5:2	Synchronization	Each bit is 1 if the corresponding XAUI lane is synchronized on receive, otherwise 0; see bits 5.24.3:0 in Table 5-32. These four bits are also used to generate the sync_status[3:0] signal described in Table 5-47.
6	Alignment	1 if the XAUI receiver is aligned over all four lanes, otherwise 0; see bit 5.24.12 in Table 5-32. This is also used to generate the align_status signal described in Table 5-47.
7	Rx Link Status	1 if the Receiver link is up, otherwise 0; see bit 5.1.2 in Table 5-27. Latches Low. Cleared by rising edge on configuration_vector[3].

Bits 0 and 1 of the status_vector port, the "Local Fault" bits, are latching-high and cleared Low by bit 2 of the configuration_vector port. Figure 5-48 shows how the status bits are cleared.

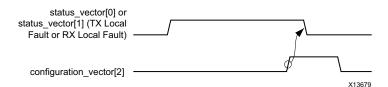


Figure 5-48: Clearing the Local Fault Status Bits

Bit 7 of the status_vector port, the "RX Link Status" bit, is latching-Low and set High by bit 3 of the configuration vector. Figure 5-49 shows how the status bit is set.

Figure 5-49: Setting the RX Link Status Bit

Debug Port

In addition to the configuration and status interfaces described in the previous section, there are always available two output ports signaling the alignment and synchronization status of the receiver. (Table 5-47.)

Table 5-47: Debug Port

Port Name	Description
debug[5]	align_status: 1 when the XAUI receiver is aligned across all four lanes, 0 otherwise.
debug[4:1]	sync_status: Each pin is 1 when the respective XAUI lane receiver is synchronized to byte boundaries, 0 otherwise.
debug[0]	Indicates when the TX phase alignment of the transceiver has been completed.

Design Considerations

This chapter describes considerations that might apply in particular design cases.

Shared Logic

XAUI provides the possibility to include the logic related to the reference clock inside the actual core. Using the shared logic feature, you can choose whether to include the logic for the generation of the reference clock in the example design, as it was in previous versions, or inside the core, simplifying the design.

This new level of hierarchy receives the name of <component_name>_support. Figure 6-1 and Figure 6-2 show the two different configurations of the example design depending on whether the shared logic is included in the core or not. The **Shared Logic** option is set in the Vivado® IDE, as shown Figure 7-1.

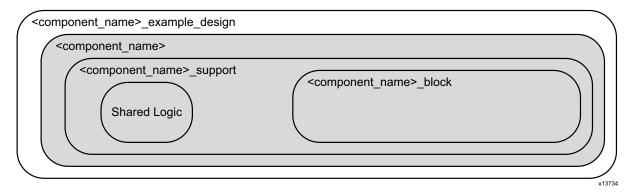


Figure 6-1: Shared Logic Included in the Core

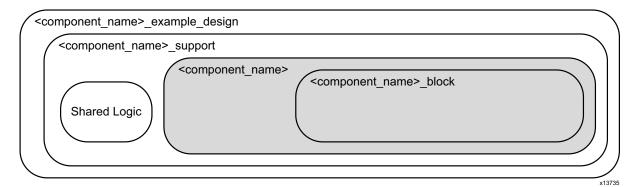


Figure 6-2: Shared Logic Included in Example Design

Clocking: UltraScale Architecture

The clocking schemes in this section are illustrative only and might require customization for a specific application.

Reference Clock

10G-XAUI

The transceivers use a reference clock of 156.25 MHz to operate at a line rate of 3.125 Gb/s.

20G-XAUI

The transceivers use a reference clock of 312.5 MHz to operate at a line rate of 6.25 Gb/s.

UltraScale Device GTH Transceivers

A single IBUFDS_GTE3 module is used to feed the reference clock to the GTHE3_COMMON transceiver Quad PLL (QPLL). This module can be included inside the core as part of the shared logic if this is included in the core instead of the example design. See Figure 6-6 and Figure 6-10 respectively for the shared logic to be included in the example design or in the core.

For more information about UltraScale device transceiver clock distribution, see the *UltraScale Architecture GTH Transceivers User Guide* (UG576) [Ref 3]

Clocking: Zynq-7000, Virtex-7, Artix-7, and Kintex-7 Devices

The clocking schemes in this section are illustrative only and might require customization for a specific application.

Reference Clock

10G — XAUI

The transceivers use a reference clock of 156.25 MHz to operate at a line rate of 3.125 Gb/s.

20G — XAUI

The transceivers use a reference clock of 312.5 MHz to operate at a line rate of 6.25 Gb/s.

7 Series FPGA GTH Transceivers

A single IBUFDS_GTE2 module is used to feed the reference clock to the GTHE2_CHANNEL PLL (CPLL). This module can be included inside the core as part of the shared logic if this is included in the core instead of the example design. See Figure 6-4 and Figure 6-8 respectively for the shared logic to be included in the example design or in the core.

For more information about 7 series FPGA transceiver clock distribution, see the section on Clocking in the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) [Ref 1].

7 Series FPGA GTX Transceivers

A single IBUFDS_GTE2 module is used to feed the reference clock to GTXE2_COMMON transceiver Quad PLL (QPLL). This module can be included inside the core as part of the shared logic if this is included in the core instead of the example design. See Figure 6-5 and Figure 6-9 respectively for the shared logic to be included in the example design or in the core.

For more information about 7 series FPGA transceiver clock distribution, see the section on Clocking in the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) [Ref 1].

7 Series FPGA GTP Transceivers

A single IBUFDS_GTE2 module is used to feed the reference clock to the GTPE2_COMMON PLL. This module can be included inside the core as part of the shared logic if this is included in the core instead of the example design. See Figure 6-3 and Figure 6-7 respectively for the shared logic to be included in the example design or in the core.

For more information about 7 series FPGA transceiver clock distribution, see the section on clocking in the 7 Series FPGAs GTP Transceiver User Guide (UG482) [Ref 2].

Internal Client-Side Interface for 10G - XAUI

The clocking schemes when shared logic is in the example design is shown in Figure 6-3 (GTP transceivers), Figure 6-4 (GTH transceivers), and Figure 6-5 (GTX transceivers) for 7 series FPGAs, and Figure 6-6 (GTH transceivers) for UltraScale devices.

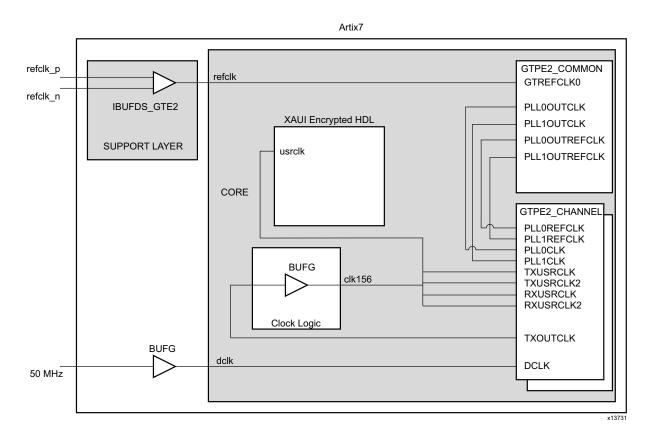


Figure 6-3: Clock Scheme for Internal Client-Side Interface 7 Series FPGA GTP Transceiver Shared Logic in Example Design

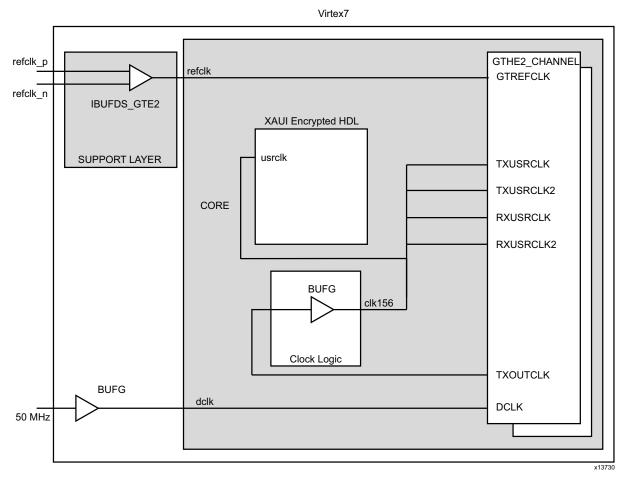


Figure 6-4: Clock Scheme for Internal Client-Side Interface 7 Series FPGA GTH Transceiver Shared Logic in Example Design

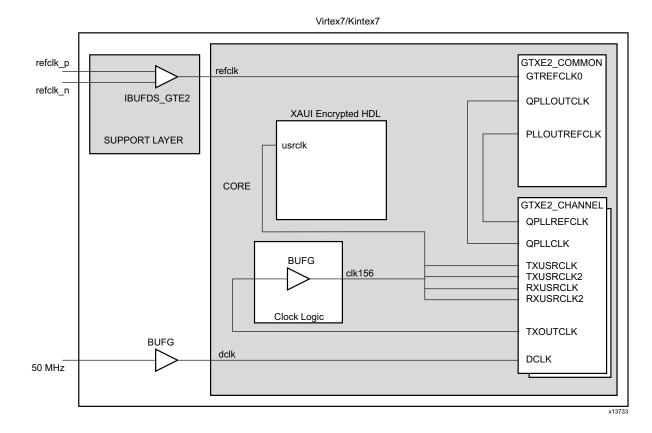


Figure 6-5: Clock Scheme for Internal Client-Side Interface 7 Series FPGA GTX Transceiver Shared Logic in Example Design

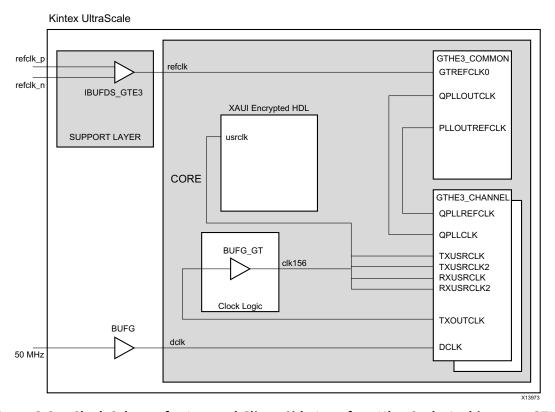


Figure 6-6: Clock Scheme for Internal Client-Side Interface UltraScale Architecture GTH Transceiver Shared Logic in Example Design

The clocking scheme when shared Logic is inside the core is shown in Figure 6-7 (GTP transceivers), Figure 6-8 (GTH transceivers), and Figure 6-9 (GTX transceivers) for 7 series FPGAs, and Figure 6-10 (GTH transceivers) for UltraScale devices.

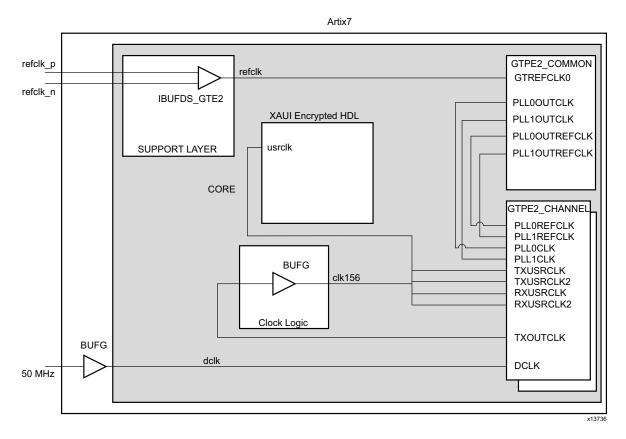


Figure 6-7: Clock Scheme for Internal Client-Side Interface 7 Series FPGA GTP Transceiver Shared Logic in Core

GTHE2_CHANNEL refclk_p refclk GTREFCLK refclk_n IBUFDS_GTE2 XAUI Encrypted HDL usrclk SUPPORT LAYER txusrclk txusrclk2 CORE rxusrclk rxusrclk2 BUFG clk156 Clock Logic txoutclk BUFG dclk dclk 50 MHz

Virtex7

Figure 6-8: Clock Scheme for Internal Client-Side Interface 7 Series FPGA GTH Transceiver Shared Logic in Core

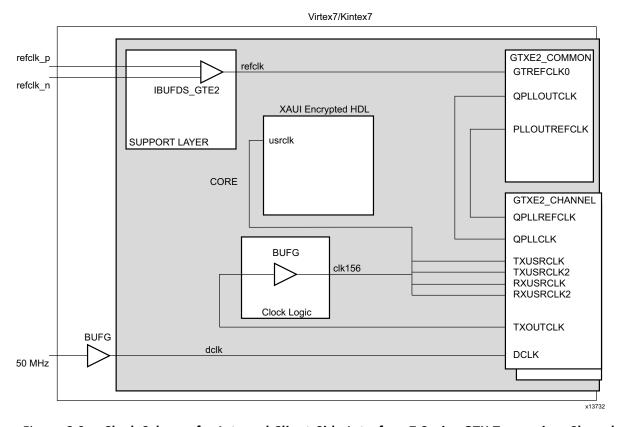


Figure 6-9: Clock Scheme for Internal Client-Side Interface 7 Series GTX Transceiver Shared Logic in Core

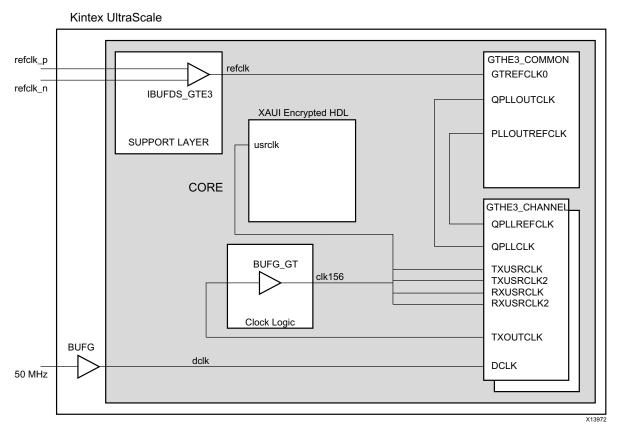


Figure 6-10: Clock Scheme for Internal Client-Side Interface UltraScale Architecture GTH
Transceiver Shared Logic in Core

A 156.25 MHz clock is derived from the transceiver TXOUTCLK port inside the core, and used as the clock for the netlist part of the XAUI core. This clock can be used for user logic, using the clk156_out port; however, it cannot be used as a clock for another XAUI clock, due to problems of alignment.

A dedicated clock DCLK is used by the transceiver tiles. The example design uses a 50 MHz clock. Choosing a different frequency allows sharing of clock resources. See the 7 Series FPGAs GTP Transceiver User Guide (UG482) [Ref 2] for more information about this clock.

Internal Client-Side Interface for 20G – XAUI (Zynq-7000, Virtex-7, Kintex-7, Artix-7, and UltraScale Devices)

The simplest clocking scheme is the same as in the 10G XAUI.

A 312.5 MHz clock is derived from the transceiver txoutclk port inside the core, and used as the clock for the netlist part of the XAUI core. This clock can be used for user logic, using the clk156_out port; however, it cannot be used as a clock for another XAUI clock, due to problems of alignment.

A dedicated clock is used by the transceiver. The example design uses a 50 MHz clock. Choosing a different frequency allows sharing of clock resources. See the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) [Ref 1] and the UltraScale Architecture GTH Transceivers User Guide (UG576) [Ref 3] for more information about this clock.

Multiple Core Instances

In UltraScale, Virtex®-7 and Kintex®-7 devices, the reference clock can be shared from a neighboring quad. Logic clocks cannot be shared between core instances with the supplied design. The usrclks on each core and quad of transceivers are sourced from the TXOUTCLK port of that quad. See the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) [Ref 1] and the UltraScale Architecture GTH Transceivers User Guide (UG576) [Ref 3].

IMPORTANT: The clock from a XAUI core (156.25 MHz or 312.5 MHz) cannot be used by another XAUI core. However, it is possible to use this clock for other user logic.

Reset Circuits

All register resets within the XAUI core netlist are synchronous to the usrclk port or dclk port, apart from the registers on the input side of the transmit elastic buffer which are synchronous to the tx_clk port.

Receiver Termination: Virtex-7 and Kintex-7 FPGAs

The receiver termination must be set correctly. The default setting is 2/3 VTTRX. See the Receiver chapter in the 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476) [Ref 1].

Transmit Skew

The transceivers are configured to operate in a mode that minimizes the amount of transmit skew that can be introduced between lanes. Full details on that maximum amount of transmit skew can be found by looking at T_{LLSKEW} in the appropriate device data sheet.

Under some circumstances it is possible that T_{LLSKEW} can exceed the PMA Tx Skew budget defined in 802.3-2012. If it is necessary to keep within this skew budget, then the appropriate amount must be borrowed from the PCB and medium sections of the budget to keep the total amount of skew within range.

Design Flow Steps

This chapter describes customizing and generating the core, constraining the core, and the simulation, synthesis and implementation steps that are specific to this IP core. More detailed information about the standard Vivado® design flows in the IP Integrator can be found in the following Vivado Design Suite user guides:

- Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994) [Ref 10]
- Vivado Design Suite User Guide: Designing with IP (UG896) [Ref 4]
- Vivado Design Suite User Guide: Getting Started (UG910) [Ref 5]
- Vivado Design Suite User Guide: Logic Simulation (UG900) [Ref 6]

Customizing and Generating the Core

You can customize the IP for use in your design by specifying values for the various parameters associated with the IP core using the following steps:

- 1. Select the IP from the IP catalog.
- 2. Double-click the selected IP or select the Customize IP command from the toolbar or popup menu.

For details, see the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 4] and the *Vivado Design Suite User Guide: Getting Started* (UG910) [Ref 5].

Note: Figures in this chapter are illustrations of the Vivado IDE. This layout might vary from the current version.

Main Screen

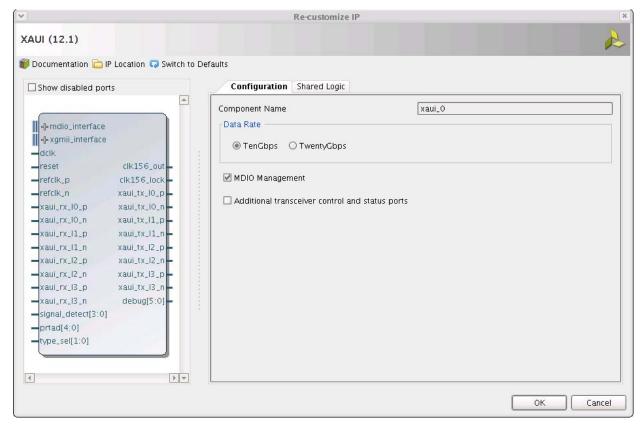


Figure 7-1: Main Screen

Component Name

Enter the desired name for the core.

Data Rate

Selects between 10G and 20G XAUI Data Rates.

MDIO Management

Use the MDIO Management interface or configuration/status vectors.

Transceiver Control and Status Ports

If selected, enables additional transceiver control ports for DRP, Tx Driver, Rx Equalization, and other features such as PRBS.

Shared Logic Tab

Determines whether some shared clocking logic is being included as part of the core itself or as part of the example design.

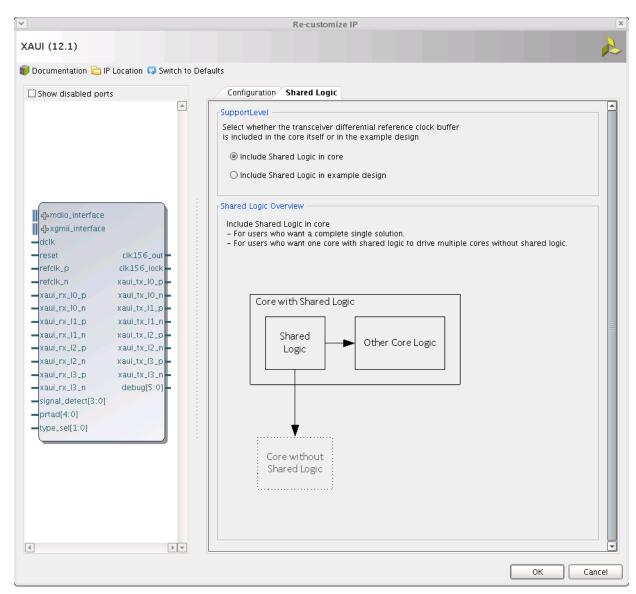


Figure 7-2: Shared Logic Tab

User Parameters

Table 7-1 shows the relationship between the GUI fields in the Vivado IDE and the User Parameters (which can be viewed in the Tcl console).

Table 7-1: GUI Parameter to User Parameter Relationship

GUI Parameter/Value ⁽¹⁾	User Parameter/Value ⁽¹⁾	Default Value
MDIO Management	Mdio_Management	true
Data Rate	Data_Rate	TenGbps
TenGbps	TenGbps	
TwentyGbps	TwentyGbps	
Shared Logic	SupportLevel	0
Include Shared Logic in core	1	
Include Shared Logic in example design	0	
Additional transceiver control and status ports	TransceiverControl	false

^{1.} Parameter values are listed in the table where the GUI parameter value differs from the user parameter value. Such values are shown in this table as indented below the associated parameter.

Output Generation

For details, see "Generating IP Output Products" in the *Vivado Design Suite User Guide:* Designing with IP (UG896) [Ref 4].

Constraining the Core

This section contains information about constraining the core in the Vivado Design Suite.

Required Constraints

This section defines the constraint requirements for the core. Constraints are provided with an XDC file. An XDC is provided with the HDL example design to give a starting point for constraints for the user design. The following constraints are required.

Constraints specific to the core are applied by the Vivado® Design Suite. A hierarchical XDC is applied to the core that will apply the necessary clock constraints. System-level constraints such as DCLK frequency and Transceiver location should be applied in the user XDC.

Clock Frequencies

A constraint specifying the frequency of the clock (156.25 MHz for 10G or 312.5 MHz for 20G) is already set in the hierarchical XDC file. This clock is being sourced from the txoutclk port of one of the transceivers inside the core.

DCLK clock must be provided and a constraint is required to specify its frequency:

```
create_clock -name dclk -period 20.000 [get_ports dclk]
```

Transceiver Placement

7-Series Devices

Transceivers should be given location constraints appropriate to your design for 7 series devices. The following example illustrates GTX transceivers:

```
set_property LOC GTXE2_CHANNEL_X1Y8 [get_cells -hierarchical -filter {NAME =~ */
gt_wrapper_i/gt0_<CompName>_gt_wrapper_i/gtxe2_i}]
set_property LOC GTXE2_CHANNEL_X1Y9 [get_cells -hierarchical -filter {NAME =~ */
gt_wrapper_i/gt1_<CompName>_gt_wrapper_i/gtxe2_i}]
set_property LOC GTXE2_CHANNEL_X1Y10 [get_cells -hierarchical -filter {NAME =~ */
gt_wrapper_i/gt2_<CompName>_gt_wrapper_i/gtxe2_i}]
set_property LOC GTXE2_CHANNEL_X1Y11 [get_cells -hierarchical -filter {NAME =~ */
gt_wrapper_i/gt3_<CompName>_gt_wrapper_i/gtxe2_i}]
```

For GTH transceivers: replace the GTXE2 string with GTHE2 and the gtxe2_i string with gthe2_i, and change the X/Y coordinates to your chosen location.

For Artix-7 GTP transceivers: replace the GTXE2 string with GTPE2 and the gthe2_i string with gtpe2_i, and change the X/Y coordinates to your chosen location.

UltrasScale Devices

The following example illustrates the placement of GHTE3 transceivers when the shared logic is in the example design:

```
set_property LOC GTHE3_CHANNEL_X0Y0 [get_cells xaui_support_i/xaui_i/inst/<=:
CompName :>_gt_i/*/gen_gtwizard_gthe3_top.<CompName>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_channel_container[*].gen_enabled_channel.gthe3_channel_wrapp
er_inst/channel_inst/
gthe3_channel_gen.gen_gthe3_channel_inst[0].GTHE3_CHANNEL_PRIM_INST ]
set_property LOC GTHE3_CHANNEL_X0Y1 [get_cells xaui_support_i/xaui_i/inst/<=:
CompName :>_gt_i/*/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_channel_container[*].gen_enabled_channel.gthe3_channel_wrapp
er_inst/channel_inst/
gthe3_channel_gen.gen_gthe3_channel_inst[1].GTHE3_CHANNEL_PRIM_INST ]
set_property LOC GTHE3_CHANNEL_X0Y2 [get_cells xaui_support_i/xaui_i/inst/<=:
CompName :>_gt_i/*/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_channel_container[*].gen_enabled_channel.gthe3_channel_wrapp
er_inst/channel_inst/
gthe3_channel_gen.gen_gthe3_channel_inst[2].GTHE3_CHANNEL_PRIM_INST ]
```



```
set_property LOC GTHE3_CHANNEL_X0Y3 [get_cells xaui_support_i/xaui_i/inst/<=:
CompName :>_gt_i/*/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_channel_container[*].gen_enabled_channel.gthe3_channel_wrapp
er_inst/channel_inst/
gthe3_channel_gen.gen_gthe3_channel_inst[3].GTHE3_CHANNEL_PRIM_INST ]
set_property LOC GTHE3_COMMON_X0Y0 [get_cells xaui_support_i/xaui_i/*/<=: CompName
:>_gt_i/inst/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_common.gen_common_container[*].gen_enabled_common.gthe3_comm
on_wrapper_inst/common_inst/gthe3_common_gen.GTHE3_COMMON_PRIM_INST ]
```

When shared logic is in the core, the GTHE3 transceivers can be placed using the following example:

```
set_property LOC GTHE3_CHANNEL_X0Y0 [get_cells xaui_i/inst/xaui_block_i/<=: CompName
:>_gt_i/*/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_channel_container[*].gen_enabled_channel.gthe3_channel_wrapp
er_inst/channel_inst/
gthe3_channel_gen.gen_gthe3_channel_inst[0].GTHE3_CHANNEL_PRIM_INST ]
set_property LOC GTHE3_CHANNEL_X0Y1 [get_cells xaui_i/inst/xaui_block_i/<=: CompName
:>_gt_i/*/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_channel_container[*].gen_enabled_channel.gthe3_channel_wrapp
er_inst/channel_inst/
gthe3_channel_gen.gen_gthe3_channel_inst[1].GTHE3_CHANNEL_PRIM_INST ]
set_property LOC GTHE3_CHANNEL_X0Y2 [get_cells xaui_i/inst/xaui_block_i/<=: CompName
:>_gt_i/*/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_channel_container[*].gen_enabled_channel.gthe3_channel_wrapp
er_inst/channel_inst/
gthe3_channel_gen.gen_gthe3_channel_inst[2].GTHE3_CHANNEL_PRIM_INST ]
set_property LOC GTHE3_CHANNEL_X0Y3 [get_cells xaui_i/inst/xaui_block_i/<=: CompName
:>_gt_i/*/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_channel_container[*].gen_enabled_channel.gthe3_channel_wrapp
er_inst/channel_inst/
gthe3_channel_gen.gen_gthe3_channel_inst[3].GTHE3_CHANNEL_PRIM_INST ]
set_property LOC GTHE3_COMMON_X0Y0 [get_cells xaui_i/*/xaui_block_i/<=: CompName</pre>
:>_gt_i/inst/gen_gtwizard_gthe3_top.<=: CompName :>_gt_gtwizard_gthe3_inst/
gen_gtwizard_gthe3.gen_common.gen_common_container[*].gen_enabled_common.gthe3_comm
on_wrapper_inst/common_inst/gthe3_common_gen.GTHE3_COMMON_PRIM_INST ]
```

Simulation

For comprehensive information about Vivado® simulation components, as well as information about using supported third-party tools, see the *Vivado Design Suite User Guide: Logic Simulation* (UG900) [Ref 6].

All simulation sources are included that are required by the core. Simulation of XAUI at the core level is not supported without the addition of a test bench (not supplied). Simulation of the example design is supported.

Synthesis and Implementation

For details about synthesis and implementation, see "Synthesizing IP" and "Implementing IP" in the *Vivado Design Suite User Guide: Designing with IP* (UG896) [Ref 4].

All synthesis sources are included that are required by the core. For the XAUI core this is a mix of both encrypted and unencrypted source. Only the unencrypted sources are visible and optionally editable by using the **Unlink IP Vivado** option.

Detailed Example Design

Figure 8-1 and Figure 8-2 illustrate the top-level example design for the core with the two different configurations of the shared logic feature for 7 series FPGAs.

Virtex7/Kintex7/Artix7 FPGA

Figure 8-1: Example HDL Wrapper for XAUI with Shared Logic in the Example Design (7-Series FPGAs)

Virtex7/Kintex7/Artix7 FPGA

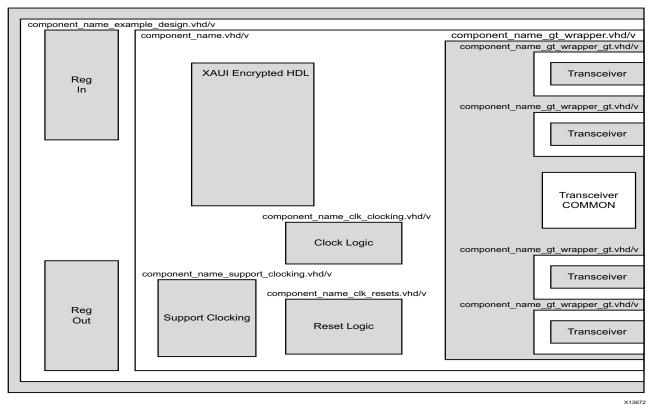


Figure 8-2: Example HDL Wrapper for XAUI with Shared Logic in Core (7-Series FPGAs)

Figure 8-3 and Figure 8-4 illustrate the top-level example design for the core with the two different configurations of the shared logic feature for UltraScale™ architecture.

Component_name_stample_design.whd/v

Reg In

Component_name_support_clocking.whd/v

Component_name_support_clocking.whd/v

Component_name_stample_design.whd/v

Component_name_stample_design.whd/v

Component_name_stample_design.whd/v

Clock Logic

component_name_ctk_resets.whd/v

Reg
Out

Figure 8-3: Example HDL Wrapper for XAUI with Shared Logic in the Example Design (UltraScale Architecture)

UltraScale Architecture

Component_name_example_design.whd/v

Reg In

Component_name_support_clocking.whd/v

Support Clocking

Component_name_support_clocking.whd/v

Clock Logic

Component_name_clk_resets.whd/v

Reg Out

Figure 8-4: Example HDL Wrapper for XAUI with Shared Logic in Core (UltraScale Architecture)

The example design contains the following:

- Clock management logic and clock buffer instances
- Re-timing registers on the parallel data interface, both on inputs and outputs
- An instance of the block level module which contains the core, transceiver wrappers and associated logic

The example design allows the HDL to go through implementation and simulation. It is not intended to be placed directly on a board and does not constrain the I/O pins.

The example design can be opened in a separate project by generating the **Examples**' output product, then right clicking the core instance and choosing **Open IP Example Design...**

Test Bench

This chapter contains information about the provided test bench in the Vivado® Design Suite.

The demonstration test bench is designed to exercise the example design. It uses the MDIO management interface to determine when the core is initialized and ready for use and then sends some simple frames in both Tx and Rx directions.

The test bench is supplied as part of the Example Simulation output product group.

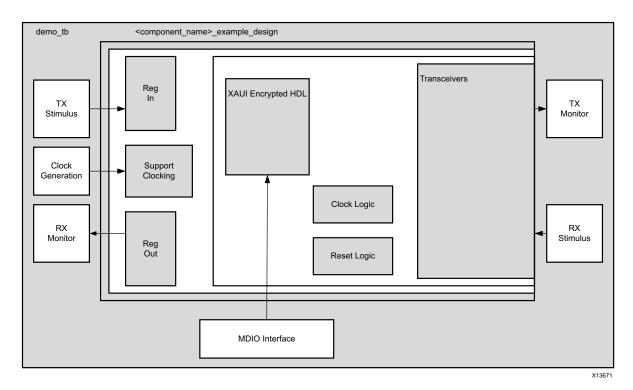


Figure 9-1: Demonstration Test Bench

The demonstration test bench is defined in the demo tb.v/vhd file.

The test bench, shown in Figure 9-1 consists of:

- Clock generators
- A TX stimulus block
- A RX stimulus block
- A TX Monitor block, which checks that transmission was made successfully
- A RX Monitor block, which checks that reception was made successfully
- A MDIO monitor to check when the core is ready to send/receive frames

The demonstration test bench performs the following tasks:

- Clocks are generated.
- An initial reset is applied.
- The MDIO interface is addressed to check when the XAUI core is ready to send/receive frames.
- When the core is ready, the TX/RX stimulus blocks send four frames.
- The RX/TX Monitor blocks check the resulting frames against the original ones.
- A watchdog timer is set to stop the simulation with a failure after 200 µs for GTX and GTH (20G XAUI) or 3 ms for GTP and GTH (10G XAUI) transceivers and 800 µs for UltraScale™ devices.

Verification and Interoperability

The XAUI core has been verified using both simulation and hardware testing.

Simulation

A highly parameterizable transaction-based simulation test suite has been used to verify the core. Tests included:

- Register access over MDIO
- Loss and re-gain of synchronization
- Loss and re-gain of alignment
- Frame transmission
- Frame reception
- Clock compensation
- · Recovery from error conditions

Hardware Testing

The core has been used in several hardware test platforms within Xilinx. In particular, the core has been used in a test platform design with the Xilinx® 10-Gigabit Ethernet MAC core. This design comprises the MAC, XAUI, a "ping" loopback FIFO, and a test pattern generator all under embedded PowerPC® processor control. This design has been used for conformance and interoperability testing at the University of New Hampshire Interoperability Lab. PCS reports are available from the factory on request.

Migrating and Upgrading

This appendix contains information about migrating a design from ISE® to the Vivado® Design Suite, and for upgrading to a more recent version of the IP core. For customers upgrading in the Vivado Design Suite, important details (where applicable) about any port changes and other impact to user logic are included.

Device Migration

If you are migrating from a 7 series GTX or GTH device to an UltraScale GTH device, the prefixes of the optional transceiver debug ports for single-lane cores are changed from "gt0", "gt1" to "gt", and the suffix " $_i$ n" and " $_i$ out" are dropped. For multi-lane cores, the prefixes of the optional transceiver debug ports gt(n) are aggregated into a single port. For example: gt0_gtrxreset and gt1_gtrxreset now become gt_gtrxreset [1:0]. This is true for all ports, with the exception of the DRP buses which follow the convention of gt(n)_drpxyz.

It is important to update your design to use the new transceiver debug port names. For more information about migration to UltraScale devices, see the *UltraScale Architecture Migration Methodology Guide* (UG1026) [Ref 7].

Migrating to the Vivado Design Suite

For information on migrating from ISE tools to the Vivado Design Suite, see the *ISE to Vivado Design Suite Migration Guide* (UG911) [Ref 8].

Upgrading in the Vivado Design Suite

In the latest revision of the core, there have been several changes that make the core pin-incompatible with the previous version(s) due to the addition of certain features such as shared logic, the transceiver control and status port and the generation of clock and reset internally inside the core.

Parameter Changes

There have been no parameter changes from v11.0.

Port Changes From v11.0 to v12.1

In v11.0, the 156.25 MHz clock was previously an input port (clk156), usually generated using the txoutclk port from the transceiver. In v12.0, the clock generation is done internally inside the actual core; therefore, removing the need for the input port clk156 and the output port txoutclk. Additionally, the core in v12.0 provides the port clk156_out in order to share this clock with the user logic (However, note that this clock should *not* be used to drive another XAUI core).

Because of the internal clock generation, the port mmcm_lock is no longer required. Also, the output port txlock has changed its name to clk156_lock.

The synchronous reset was also an input in v11.0 and now it is generated inside the core in v12.0. For this reason, input port reset156 is no longer required.

In v12.0, mgt_tx_ready, align_status, and sync_status ports have been grouped into a single debug port.

The ports related to the drp interface (drp_addr, drp_en, drp_i, drp_o, drp_rdy, drp_we) are now split into four sets, one for each transceiver, and are only available when the **Transceiver Control and Status Ports** option is enabled, receiving the names:

- Channel 0: gt0_drpaddr, gt0_drpen, gt0_drpdi, gt0_drpdo, gt0_drprdy, and gt0_drpwe;
- Channel 1: gt1_drpaddr, gt1_drpen, gt1_drpdi, gt1_drpdo, gt1_drprdy, and gt1_drpwe0;
- Channel 2: gt2_drpaddr, gt2_drpen, gt2_drpdi, gt2_drpdo, gt2_drprdy, and gt2_drpwe;
- Channel 3: gt3_drpaddr, gt3_drpen, gt3_drpdi, gt3_drpdo, gt3_drprdy, and gt3_drpwe

If the **Transceiver Control and Status Ports** option is enabled, the core also provides some extra ports, which have already been described in Table 2-8.

The following tables summarizes the port changes and the suggested solutions.

Table B-1: Ports Removed from v11.0

Port	Direction	Reason for change	Proposed Solution
clk156	IN	Clock generated inside the core	Port no longer required, remove connection.
txoutclk	OUT	Clock generated inside the core	Rename to clk156_out port
txlock	OUT	Clock generated inside the core	Rename to clk156_lock
mmcm_lock	IN	Clock generated inside the core	Port no longer required, remove connection.
reset156	IN	Synchronous reset generated inside the core	Port no longer required, remove connection.
mgt_tx_ready	OUT	Grouped all debug signals in one port.	Rename to debug[0]
align_status	OUT	Grouped all debug signals in one port.	Rename to debug[5]
sync_status[3:0]	OUT	Grouped all debug signals in one port.	Rename to debug[4:1]
drp_addr[8:0]	IN	DRP interface moved to Transceiver Control and Status Ports	Use gt0_drpaddr, gt1_drpaddr, gt2_drpaddr, gt3_drpaddr
drp_en[3:0]	IN	DRP interface moved to Transceiver Control and Status Ports	Use gt0_drpen, gt1_drpen, gt2_drpen, gt3_drpen
drp_we[3:0]	IN	DRP interface moved to Transceiver Control and Status Ports	Use gt0_drpwe, gt1_drpwe, gt2_drpwe, gt3_drpwe
drp_i[15:0]	IN	DRP interface moved to Transceiver Control and Status Ports	Use gt0_drpi, gt1_drpi, gt2_drpi, gt3_drpi
drp_o[63:0]	OUT	DRP interface moved to Transceiver Control and Status Ports	Use gt0_drpo, gt1_drpo, gt2_drpo, gt3_drpo
drp_rdy[3:0]	OUT	DRP interface moved to Transceiver Control and Status Ports	Use gt0_drprdy, gt1_drprdy, gt2_drprdy, gt3_drprdy
drp_busy	OUT	DRP interface moved to Transceiver Control and Status Ports	Use gt0_drp_busy, gt1_drp_busy, gt2_drp_busy, gt3_drp_busy

Table B-2: Ports Added in v12.0

Port	Direction	Reason for change	Proposed Solution
clk156_out	OUT	Clock generated inside the core	Used to share the core 156.25 MHz clock
clk156_lock	OUT	Clock generated inside the core	Used to share the core 156.25 MHz clock
debug[5:0]	OUT	Grouped all debug signals in one port	debug [5] previously named align_status, debug[4:1] previously named sync_status[3:0] and debug[0] previously named mgt_tx_ready.

Table B-3: Ports Added when the "Transceiver Control and Status Ports" Option is Enabled (N is the number of the channel)

Port	Direction	Reason for Change	Proposed Solution
gtN_rxprbscntreset_in	IN	Added Transceiver Control and Status Ports	Assign default value: '0'
gtN_rxprbserr_out	OUT	Added Transceiver Control and Status Ports	Assign default value: open
gtN_rxprbssel_in	IN	Added Transceiver Control and Status Ports	Assign default value: B"000"
gtN_txprbssel_in	IN	Added Transceiver Control and Status Ports	Assign default value: B"000"
gtN_txprbsforceerr_in	IN	Added Transceiver Control and Status Ports	Assign default value: '0'
gtN_txdiffctrl_in	IN	Added Transceiver Control and Status Ports	Assign default value: B"1000"
gtN_txpostcursor_in	IN	Added Transceiver Control and Status Ports	Assign default value: B"00000"
gtN_txprecursor_in	IN	Added Transceiver Control and Status Ports	Assign default value: B"00000"
gtN_rxlpmen_in	IN	Added Transceiver Control and Status Ports	(GTX and GTH transceivers only) Assign default value: '0'
gtN_rxdfelpmreset_in	IN	Added Transceiver Control and Status Ports	(GTX and GTH transceivers only) Assign default value: '0'
gtN_rxmonitorsel_in	IN	Added Transceiver Control and Status Ports	(GTX and GTH transceivers only) Assign default value: B"00"
gtN_rxmonitorout_out	OUT	Added Transceiver Control and Status Ports	(GTX and GTH transceivers only) Assign default value: open
gtN_rxlpmreset_in	IN	Added Transceiver Control and Status Ports	(GTP transceivers) Assign default value: '0'
gtN_rxlpmhfhold_in	IN	Added Transceiver Control and Status Ports	(GTP transceivers) Assign default value: '0'
gtN_rxlpmhfovrden_in	IN	Added Transceiver Control and Status Ports	(GTP transceivers) Assign default value: '0'
gtN_rxlpmlfhold_in	IN	Added Transceiver Control and Status Ports	(GTP transceivers) Assign default value: '0'
gtN_rxlpmlfklovrden_in	IN	Added Transceiver Control and Status Ports	(GTP transceivers) Assign default value: '0'
gtN_rxpolarity_in	IN	Added Transceiver Control and Status Ports	Assign default value: '0'
gtN_txpolarity_in	IN	Added Transceiver Control and Status Ports	Assign default value: '0'

Table B-3: Ports Added when the "Transceiver Control and Status Ports" Option is Enabled (N is the number of the channel) (Cont'd)

Port	Direction	Reason for Change	Proposed Solution
gtN_loopback_in	IN	Added Transceiver Control and Status Ports	Assign default value: B"000"
gtN_eyescantrigger_in	IN	Added Transceiver Control and Status Ports	Assign default value: 0
gtN_eyescanreset_in	IN	Added Transceiver Control and Status Ports	Assign default value: '0'
gtN_eyescandataerror_out	OUT	Added Transceiver Control and Status Ports	Assign default value: open
gtN_rxrate_in	IN	Added Transceiver Control and Status Ports	Assign default value: B"000"
gtN_rxdisperr_out	OUT	Added Transceiver Control and Status Ports	Assign default value: open
gtN_rxnotintable_out	OUT	Added Transceiver Control and Status Ports	Assign default value: open
gtN_rxresetdone_out	OUT	Added Transceiver Control and Status Ports	Assign default value: open
gtN_txresetdone_out	OUT	Added Transceiver Control and Status Ports	Assign default value: open

Port Changes From v12.0 to v12.1

Table B-4 summarizes the port changes and the suggested solutions.

Table B-4: Ports Added From v12.0 to v12.1

Port	Direction	Reason for Change	Proposed Solution
gtN_txpmareset_in	in	Added Transceiver Control and Status Ports.	Assign default value: '0'.
gtN_txpcsreset_in	in	Added Transceiver Control and Status Ports.	Assign default value: '0'.
gtN_rxpmareset_in	in	Added Transceiver Control and Status Ports.	Assign default value: '0'.
gtN_rxpcsreset_in	in	Added Transceiver Control and Status Ports.	Assign default value: '0'.
gtN_rxpmaresetdone_out	out	Added Transceiver Control and Status Ports.	(GTH, GTP transceivers) Assign default value: open.
gtN_rxbufstatus_out[2:0]	out	Added Transceiver Control and Status Ports.	Assign default value: open.
gtN_txphaligndone_out	out	Added Transceiver Control and Status Ports.	Assign default value: open.
gtN_txphinitdone_out	out	Added Transceiver Control and Status Ports.	Assign default value: open.
gtN_txdlysresetdone_out	out	Added Transceiver Control and Status Ports.	Assign default value: open.
gtN_cplllock_out	out	Added Transceiver Control and Status Ports.	(GTH transceivers) Assign default value: open.
gtN_qplllock_out	out	Added Transceiver Control and Status Ports.	(GTX, GTP transceivers) Assign default value: open.
gtN_rxcdrhold_in	in	Added Transceiver Control and Status Ports.	Assign default value: '0'.
gtN_dmonitorout_out	out	Added Transceiver Control and Status Ports.	Assign default value: open.
gtN_rxcommadet_out	out	Added Transceiver Control and Status Ports.	Assign default value: open.

Table B-5: Port Changed

Port Name v12.1	Port Name v12.0
gtN_rxlpmlfovrden_in	gtN_rxlpmlfklovrden_in

Debugging Designs

This chapter provides information on using resources available on the Xilinx[®] Support website, available debug tools, and a step-by-step process for debugging designs that use the XAUI core.

Finding Help on xilinx.com

To help in the design and debug process when using the XAUI core, the Xilinx Support web page (www.xilinx.com/support) contains key resources such as product documentation, release notes, answer records, and links for obtaining further product support.

Documentation

This product guide is the main document associated with the XAUI core. This guide, along with documentation related to all products that aid in the design process, can be found on the Xilinx Support web page (www.xilinx.com/support) or by using the Xilinx Documentation Navigator.

Download the Xilinx Documentation Navigator from the Design Tools tab on the Downloads page (www.xilinx.com/download). For more information about this tool and the features available, open the online help after installation.

Answer Records

Answer Records include information on commonly encountered problems, helpful information on how to resolve these problems, and any known issues with a Xilinx product. Answer Records are created and maintained daily ensuring that users have access to the most up-to-date information on Xilinx products.

Answer Records can be found by searching the Answers Database.

To use the Answers Database Search:

- 1. Navigate to www.xilinx.com/support. The Answers Database Search is located at top of this web page.
- 2. Enter keywords in the provided search field and select **Search**.
- Examples of searchable keywords are product names, error messages, or a generic summary of the issue encountered.
- To see all answer records directly related to the XAUI core, search for the phrase "XAUI."

Master Answer Record for the XAUI core

AR 54666

Contacting Technical Support

Xilinx provides technical support at www.xilinx.com/support for this LogiCORE™ IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled DO NOT MODIFY.

To contact Technical Support:

- 1. Navigate to www.xilinx.com/support.
- 2. Open a WebCase by selecting the WebCase link located under Additional Resources.

When opening a WebCase, include:

- Target FPGA including package and speed grade.
- All applicable Xilinx Design Tools and simulator software versions.
- Additional files based on the specific issue might also be required. See the relevant sections in this debug guide for guidelines about which file(s) to include with the WebCase.

Note: Access to WebCase is not available in all cases. Login to the WebCase tool to see your specific support options.

Debug Tools

Vivado Lab Tools

Vivado® lab tools insert logic analyzer and virtual I/O cores directly into your design. Vivado lab tools allow you to set trigger conditions to capture application and integrated block port signals in hardware. Captured signals can then be analyzed. This feature represents the functionality in the Vivado IDE that is used for logic debugging and validation of a design running in Xilinx devices in hardware.

The Vivado logic analyzer is used to interact with the logic debug LogiCORE™ IP cores, including:

- ILA 2.0 (and later versions)
- VIO 2.0 (and later versions)

See Vivado Design Suite User Guide: Programming and Debugging (UG908) [Ref 9].

Link Analyzers

Link analyzers can be used to generate and analyzer traffic for hardware debug and testing. Common link analyzers include:

- SMARTBITS
- IXIA

Simulation Specific Debug

This section provides simulation debug flow diagrams for some of the most common issues. Endpoints that are shaded gray indicate that more information can be found in sections after the figure.

Questa SIM Debug

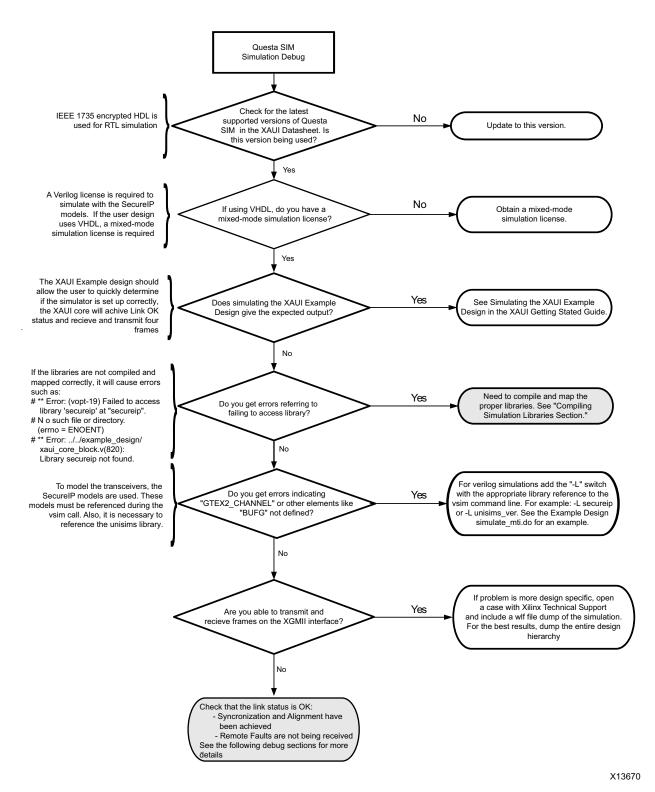


Figure C-1: Questa SIM Debug Flow Diagram

Compiling Simulation Libraries

Simulation libraries must be compiled for third-party simulators when running outside of the Vivado IDE. *Vivado Design Suite User Guide - Logic Simulation* (UG900) [Ref 6].

Next Step

If the debug suggestions listed previously do not resolve the issue, open a support case to have the appropriate Xilinx expert assist with the issue.

To create a technical support case in WebCase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

- Detailed description of the issue and results of the steps listed previously.
- Attach a VCD or WLF dump of the simulation.

To discuss possible solutions, use the Xilinx User Community: forums.xilinx.com/xlnx/

Hardware Debug

Hardware issues can range from link bring-up to problems seen after hours of testing. This section provides debug steps for common issues. The Vivado lab tools are a valuable resource to use in hardware debug and the signal names mentioned in the following individual sections can be probed using the Vivado lab tools for debugging the specific problems. Many of these common issue can also be applied to debugging design simulations.

General Checks

Ensure that all the timing constraints for the core were met during Place and Route.

- Does it work in timing simulation? If problems are seen in hardware but not in timing simulation, this could indicate a PCB issue.
- Ensure that all clock sources are clean. If using DCMs in the design, ensure that all DCMs have obtained lock by monitoring the locked port.

Monitoring the XAUI Core with Vivado Lab Tools

XGMII signals and signals between XAUI core and the transceiver can be added to
monitor data transmitted and received. See Table 2-6 and Table 2-7 for a list of signal
names.

- Status signals added to check status of link: status_vector[7:0] and debug[5:0]. Optional signals to monitor the transceivers, listed in Table 2-8, are available by checking this option in the configuration of the core.
- To interpret control codes in on the XGMII interface or the interface to the transceiver, see Table C-1 and Table C-2.
- An Idle (0x07) on the XGMII interface is encoded to be a randomized sequence of /K/ (Sync), /R/ (Skip), /A/(Align) codes on the XAUI interface. For more information on this encoding, see the IEEE 802.3-2012 specification (section 48.2.4.2) for more details.

Table C-1: XGMII Control Codes

TXC	TXD	Description
0	0x00 through 0xF	Normal data transmission
1	0x07	Idle
1	0x9C	Sequence
1	0xFB	Start
1	0xFD	Terminate
1	0xFE	Error

Table C-2: XAUI Control Codes

Codegroup	8-bit value	Description
Dxx.y	0xXX	Normal data transmission
K28.5	0xBC	/K/ (Sync)
K28.0	0x1C	/R/ (Skip)
K28.3	0x7C	/A/ (Align)
K28.4	0x9C	/Q/ (Sequence)
K27.7	0xFB	/S/ (Start)
K29.7	0xFD	/T/ (Terminate)
K30.7	0xFE	/E/ (Error)

Problems with Data Reception or Transmission

Problems with data reception or transmission can be caused by a wide range of factors. Following is a flow diagram of steps to debug the issue. Each of the steps are discussed in more detail in the following sections.

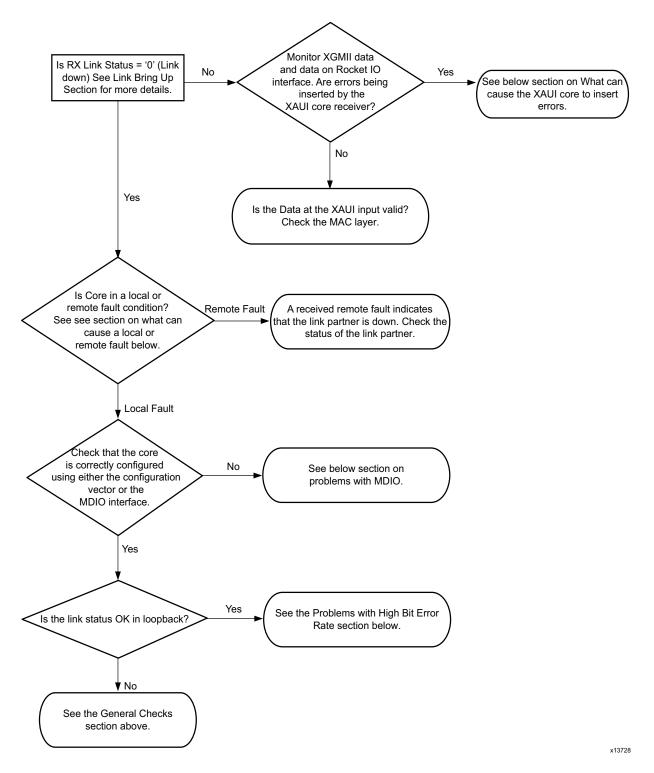


Figure C-2: Flow Diagram for Debugging Problems with Data Reception or Transmission

What Can Cause a Local or Remote Fault?

Local Fault and Remote Fault codes both start with the sequence TXD/RXD=0x9C, TXC/RXC=1 in XGMII lane 0. Fault conditions can also be detected by looking at the status vector or MDIO registers. The Local Fault and Link Status are defined as latching error indicators by the IEEE specification. This means that the Local Fault and Link Status bits in the status vector or MDIO registers must be cleared with the Reset Local Fault bits and Link Status bits in the Configuration vector or MDIO registers.

Local Fault

The receiver outputs a local fault when the receiver is not up and operational. This RX local fault is also indicated in the status and MDIO registers. The most likely causes for an RX local fault are:

- The transceiver has not locked or the receiver is being reset.
- At least one of the lanes is not synchronized debug [4:1]
- The lanes are not properly aligned debug [5]

Note: The debug [5:0] signal is not latching.

A TX local fault is indicated in the status and MDIO registers when the transceiver transmitter is in reset or has not yet completed any other initialization or synchronization procedures needed.

Remote Fault

Remote faults are only generated in the MAC reconciliation layer in response to a Local Fault message. When the receiver receives a remote fault, this means that the link partner is in a local fault condition.

When the MAC reconciliation layer receives a remote fault, it silently drops any data being transmitted and instead transmits IDLEs to help the link partner resolve its local fault condition. When the MAC reconciliation layer receives a local fault, it silently drops any data being transmitted and instead transmits a remote fault to inform the link partner that it is in a fault condition. Be aware that the Xilinx 10GEMAC core has an option to disable remote fault transmission.

Link Bring-Up

The following link initialization stages describe a possible scenario of the Link coming up between device A and device B.

Stage 1: Device A Powered Up, but Device B Powered Down

- Device A is powered up and reset.
- Device B powered down
- Device A detects a fault because there is no signal received. The Device A XAUI core indicates an RX local fault.
- The Device A MAC reconciliation layer receives the local fault. This triggers the MAC reconciliation layer to silently drop any data being transmitted and instead transmit a remote fault.
- RX Link Status = 0 (link down) in Device A

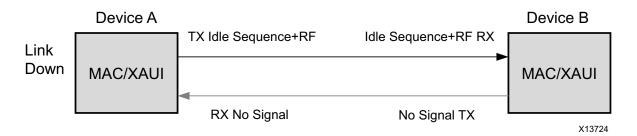


Figure C-3: Device A Powered Up, but Device B Powered Down

Stage 2: Device B Powers Up and Resets

- Device B powers up and resets.
- Device B XAUI completes Synchronization and Alignment.
- Device A has not synchronized and aligned yet. It continues to send remote faults.
- Device B XAUI passes received remote fault to MAC.
- Device B MAC reconciliation layer receives the remote fault. It silently drops any data being transmitted and instead transmits IDLEs.
- Link Status = '0' (link down) in both A and B.

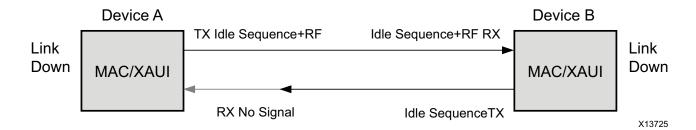


Figure C-4: Device B Powers Up and Resets

Stage 3: Device A Receives Idle Sequence

- Device A XAUI RX detects idles, synchronizes and aligns.
- Device A reconciliation layer stops dropping frames at the output of the MAC transmitter and stops sending remote faults to Device B.
- Device A Link Status='1' (Link Up)
- When Device B stops receiving the remote faults, normal operation starts.

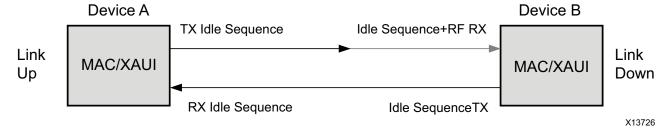


Figure C-5: Device A Receives Idle Sequence

Stage 4: Normal Operation

In Stage 4 shown in Figure C-6, Device A and Device B have both powered up and been reset. The link status is 1 (link up) in both A and B and in both the MAC can transmit frames successfully.

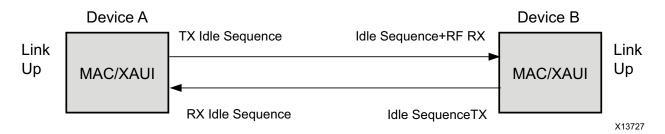


Figure C-6: Normal Operation

What Can Cause Synchronization and Alignment to Fail?

Synchronization (debug[4:1]) occurs when each respective XAUI lane receiver is synchronized to byte boundaries. Alignment (debug[5]) occurs when the XAUI receiver is aligned across all four lanes.

Following are suggestions for debugging loss of Synchronization and Alignment:

- Monitor the state of the signal_detect[3:0] input to the core. This should either be:
- connected to an optical module to detect the presence of light. Logic 1 indicates that the optical module is correctly detecting light; logic 0 indicates a fault. Therefore, ensure that this is driven with the correct polarity.
- tied to logic 1 (if not connected to an optical module).

Note: When signal_detect is set to logic 0, this forces the receiver synchronization state machine of the core to remain in the loss of sync state.

- Loss of Synchronization can happen when invalid characters are received.
- Loss of Alignment can happen when invalid characters are seen or if an /A/ code is not seen in all four lanes at the same time.
- See the following section, Problems with a High Bit Error Rate.

Transceiver Specific

- Ensure that the polarities of the txn/txp and rxn/rxp lines are not reversed. If they are, these can be fixed by using the txpolarity and rxpolarity ports of the transceiver, which can be accessed from outside the core by enabling the transceiver control and status port option.
- Check that the transceiver is not being held in reset or still be initialized by monitoring the mgt_tx_reset, mgt_rx_reset, and mgt_rxlock input signals to the XAUI encrypted HDL. The mgt_rx_reset signal is also asserted when there is an RX buffer error. An RX buffer error means that the Elastic Buffer in the receiver path of the transceiver is either under or overflowing. This indicates a clock correction issue caused by differences between the transmitting and receiving ends. Check all clock management circuitry and clock frequencies applied to the core and to the transceiver.

What Can Cause the XAUI Core to Insert Errors?

On the receive path the XAUI core will insert errors RXD=FE, RXC=1, when disparity errors or invalid data are received or if the received interframe gap (IFG) is too small.

Disparity Errors or Invalid Data

Disparity Errors or Invalid data can be checked for by monitoring the mgt_code_valid input to the XAUI core.

Small IFG

The XAUI Core inserts error codes into the Received XGMII data stream, RXD, when there are three or fewer IDLE characters (0x07) between frames. The error code (0xFE) precedes the frame "Terminate" delimiter (0xFD).

The IEEE 802.3-2012 specification (Section 46.2.1) requires a minimum interframe gap of five octets on the receive side. This includes the preceding frame Terminate control character and all Idles up to and immediately preceding the following frame Start control character. Because three (or fewer) Idles and one Terminate character are less than the required five octets, this would not meet the specification; therefore, the XAUI Core is expected to signal an error in this manner if the received frame does not meet the specification.

Problems with a High Bit Error Rate

Symptoms

If the link comes up but then goes down again or never comes up following a reset, the most likely cause for a RX Local Fault is a BER (Bit Error Rate) that is too high. A high BER causes incorrect data to be received, which leads to the lanes losing synchronization or alignment.

Debugging

Compare the issue across several devices or PCBs to ensure that the issue is not a one-off case.

- Try using an alternative link partner or test equipment and then compare results.
- Try putting the core into loopback (both by placing the core into internal loopback, and by looping back the optical cable) and compare the behavior. The core should always be capable of gaining synchronization and alignment when looping back with itself from transmitter to receiver so direct comparisons can be made. If the core exhibits correct operation when placed into internal loopback, but not when loopback is performed through an optical cable, this might indicate a faulty optical module or a PCB issue.
- Try swapping the optical module on a misperforming device and repeat the tests.

Transceiver Specific Checks

- Monitor the mgt_codevalid[7:0] input to the XAUI core by triggering on it using the Vivado lab tools. This input is a combination of the transceiver RX disparity error and RX not in table error outputs.
- These signals should not be asserted over the duration of a few seconds, minutes or even hours. If they are frequently asserted, it might indicate an issue with the transceiver.
- Place the transceiver into parallel or serial near-end loopback.
- If correct operation is seen in the transceiver serial loopback, but not when loopback is performed through an optical cable, it might indicate a faulty optical module.
- If the core exhibits correct operation in the transceiver parallel loopback but not in serial loopback, this might indicate a transceiver issue.
- A mild form of bit error rate might be solved by adjusting the transmitter Pre-Emphasis and Differential Swing Control attributes of the transceiver.

Problems with the MDIO

See MDIO Interface for detailed information about performing MDIO transactions.

Things to check for:

- Ensure that the MDIO is driven properly. Check that the mdc clock is running and that the frequency is 2.5 MHz or less.
- Ensure that the XAUI core is not held in reset.
- Read from a configuration register that does not have all 0s as a default. If all 0s are read back, the read was unsuccessful. Check that the PRTAD field placed into the MDIO frame matches the value placed on the prtad[4:0] port of the XAUI core.
- Verify in simulation and/or a Vivado lab tools capture that the waveform is correct for accessing the host interface for a MDIO read/write.

Next Steps

If the debug suggestions listed previously do not resolve the issue, open a support case to have the appropriate Xilinx expert assist with the issue.

To create a technical support case in Webcase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

- Detailed description of the issue and results of the steps listed previously.
- Attach Vivado lab tools VCD captures taken in the steps previously.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com/xlnx/

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx Support.

For a glossary of technical terms used in Xilinx® documentation, see the Xilinx Glossary.

References

To search for Xilinx documentation, go to www.xilinx.com/support

- 1. 7 Series FPGAs GTX/GTH Transceiver User Guide (UG476)
- 2. 7 Series FPGAs GTP Transceiver User Guide (UG482)
- 3. *UltraScale Architecture GTH Transceivers User Guide* (UG576)
- 4. Vivado® Design Suite User Guide: Designing with IP (UG896)
- 5. Vivado Design Suite User Guide: Getting Started (UG910)
- 6. Vivado Design Suite User Guide Logic Simulation (UG900)
- 7. UltraScale Architecture Migration Methodology Guide (UG1026)
- 8. ISE® to Vivado Design Suite Migration Guide (UG911)
- 9. Vivado Design Suite User Guide: Programming and Debugging (UG908)
- 10. Vivado Design Suite User Guide: Designing IP Subsystems using IP Integrator (UG994)

Additional Core Resources

For detailed information about XAUI technology and updates to the XAUI core, see the following:

XAUI Technology

For information about XAUI technology basics, including features, FAQs, the XAUI device interface, typical applications, specifications, and other important information, see www.xilinx.com/products/ipcenter/XAUI.htm.

Ethernet Specifications

Relevant XAUI IEEE standards, which can be downloaded in PDF format from standards.ieee.org/getieee802/: *IEEE Std.* 802.3-2012

Other Information

The 10-Gigabit Ethernet Consortium at the University of New Hampshire Interoperability Lab is an excellent source of information on 10-Gigabit Ethernet technology: www.iol.unh.edu/consortiums/10gec/index.html.

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
11/19/2014	12.1	 Updated IEEE Std. 802.3-2012. Updated Register Bit Definitions Updated figures in Interfacing to the Core and Design Considerations chapters.
06/04/2014	12.1	Added User Parameters to Design Flow Steps chapter.Added Device Migration to Migrating and Upgrading appendix.
04/02/2014	12.1	 Replaced "Kintex UltraScale" with UltraScale "architecture". Added example xdc for placement of GTHE3 transceivers in UltraScale architecture.

Date	Version	Revision
12/18/2013	12.1	 Added UltraScale™ architecture support. Updated resource tables for all devices. Updated Transceiver Control and Status Ports table for 7 Series FPGAs. Added Transceiver Control and Status Ports table for Kintex® UltraScale™ devices. Added clocking example deign information for Kintex UltraScale devices.
10/02/2013	12.0	 Revision number advanced to 12.0 to align with core version number. Updated clocking scheme. Added transceiver control and status port support. Updated Table 2-7. Added "Upgrading in the Vivado Design Suite" section to Appendix B, Migrating and Upgrading Updated screen captures in Chapter 7.
03/20/2013	2.0	 Updated for core version 11.0 and Vivado Design Suite release. Removed all ISE, Virtex®-6, Virtex-5, Virtex-4, and Spartan®-6 material. Updated Debug appendix. Added core top level changes to include transceivers and supporting logic. Added hierarchical XDC support. Added Artix®-7 FPGA 20G support.
07/25/2012	1.0	Initial Xilinx release. This new product guide is based on ds266 and ug150.

Please Read: Important Legal Notices

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos. In such critical applications, please refer to Xilinx's Terms of Sale which can be viewed at http://www.xilinx.com/legal.htm#tos.

© Copyright 2012–2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and used under license. All other trademarks are the property of their respective owners.