Langzeitverfügbarkeit mit All-Programmable System-on-Chips

Dr. Endric Schubert, Missing Link Electronics

Backgrounder Endric Schubert

- 1991 Dipl.-Ing. ET, Univ. Karlsruhe
- 1996 Dr. rer. nat. Wilhelm-Schickard-Institut f. Informatik, Univ. Tübingen
- 1996 1998 Advanced Technology Group, Exemplar Logic / Mentor Graphics, EDA for FPGA & ASIC (RTL Synthesis)
- 1999 2003 CTO, Bridges2Silicon, Inc. (EDA, System-on-Chip Debug)
- 2003 2007 CTO, ESIC Solutions (Technology Advisory for EDA & Embedded Systems Design)
- Since 2003 Guest Lecturer at Institute for Microelectronics, Univ. of Ulm
- Since 2008 CTO, Missing Link Electronics (Design Services, Configurable Systems)
- 50+ Technical presentations, inventor on 20+ patents

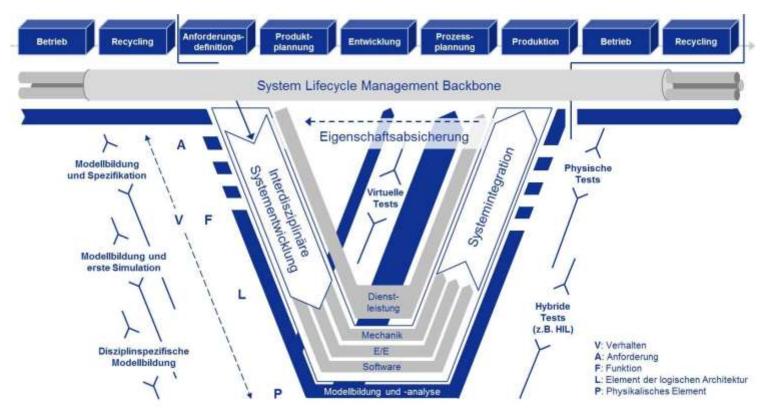
Missing Link Electronics

- Founded 2008
- Silicon Valley HQ
- 12 Engineers in Neu-Ulm, GER
- Expertise

- FPGA & Linux
- I/O Connectivity, High-Speed SerDes
- Acceleration of Algorithms & Protocols
- Heterogeneous Multi-Core Processing

Bob Gardner EDA

Endric Schubert FPGA Technology


Sebastian Stiemke Automotive / Industrial

Bob Barker Semiconductors

Missing Link Electronics – Design Services

What We Really Do

Missing Link Electronics

Technology Partners

IEEE Spectrum

SPECIAL REPORT: 50 YEARS OF MOORE'S LAW

The glorious history and inevitable decline of one of technology's greatest winning streaks

🗄 Share | 🖂 Email | 🖂 Print | 🖉 Reprint

Fifty years ago this month, Gordon Moore forecast a bright future for electronics. His ideas were later distilled into a single organizing principle—Moore's Law—that has driven technology forward at a staggering clip. We have all benefited from this miraculous development, which has forcefully shaped our modern world.

In this special report, we find that the end won't be sudden and apocalyptic but rather gradual and complicated. Moore's Law truly is the gift that keeps on giving—and surprising, as well.

The Multiple Lives of Moore's Law

Why Gordon Moore's grand prediction has endured for 50 years SOME

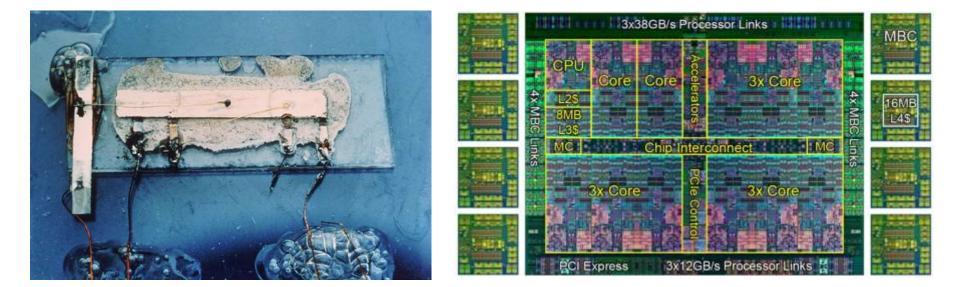
The Death of Moore's Law Will Spur Innovation

As transistors stop shrinking, open-source hardware will have its

Moore's Law Might Be Slowing Down, But Not Energy Efficiency

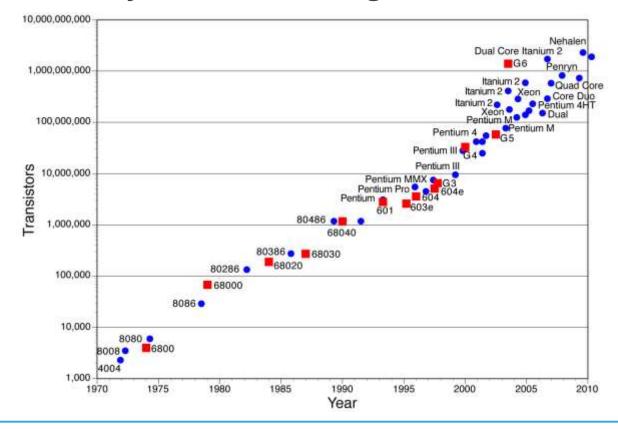
Miniaturization may be tough, but there's still room to drive down power consumption in modern computers

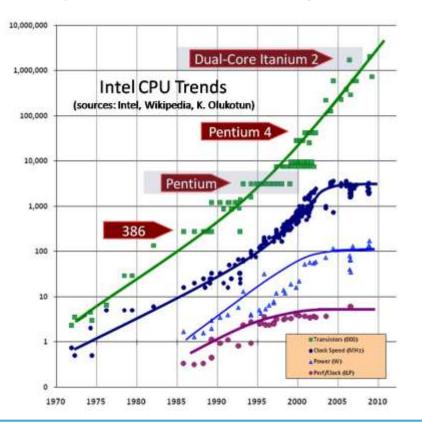
Gordon Moore: The Man Whose Name Means Progress The visionary engineer reflects on 50 years of Moore's Law



day

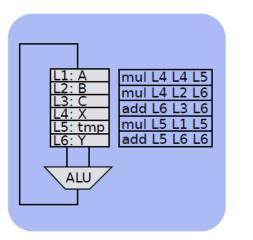
Moore's Law in Two Pictures

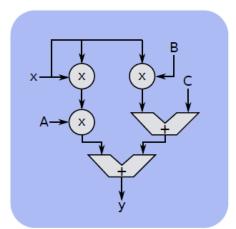

1958 IC - 1 Transistor (Jack Kilby's first IC)



Moore's Law – 50 years and counting

Moore's Law – 50 years and counting ... but

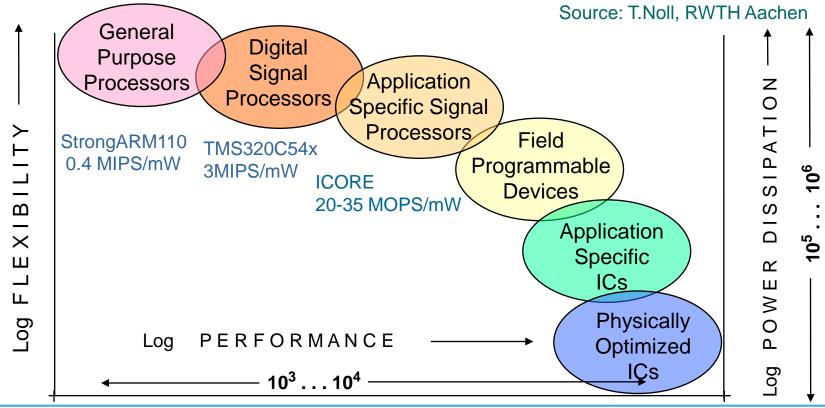

Hardware vs. Software Data Processing


Sequential Processing with CPU

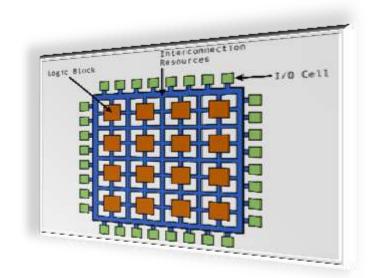
• C, C++ Program

Parallel Processing with Logic Gates

• VHDL, Verilog "Program"

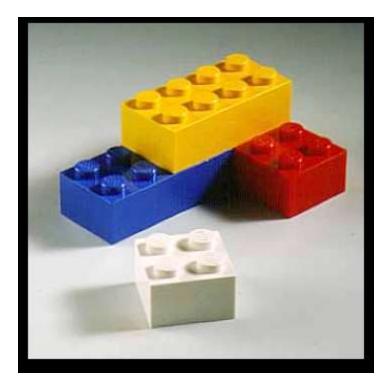


Courtesy: Dr. Andre DeHon, UPenn


Choices for Implementing Embedded Systems

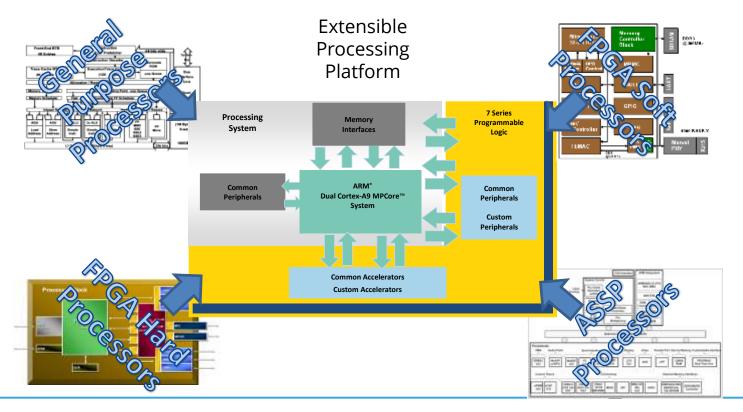
What is an FPGA (Programmable Logic)?

- A Field-Programmable Gate Array (FPGA) is an integrated circuit designed to be configured by the customer or designer <u>after</u> manufacturing—hence " fieldprogrammable" (Wikipedia)
- In their simplest form FPGAs contain:
 - Configurable Logic Blocks
 - AND, OR, Invert & many other logic functions
 - Configurable interconnect
 - Enabling Logic Blocks to be connected together
 - I/O Interfaces
- With these elements an arbitrary logic design may be created

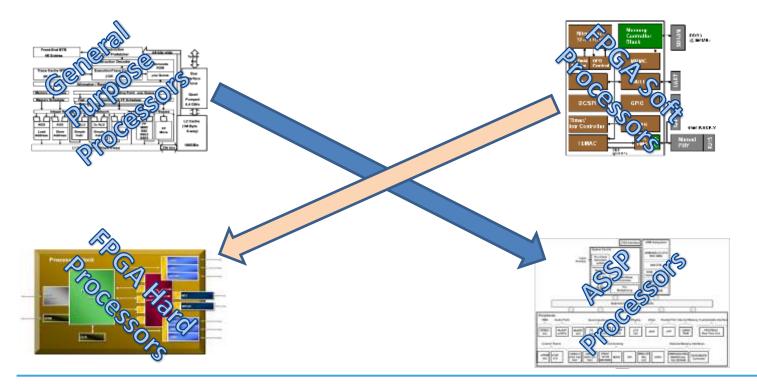

FPGAs - Circa 1990

Common Use Cases:

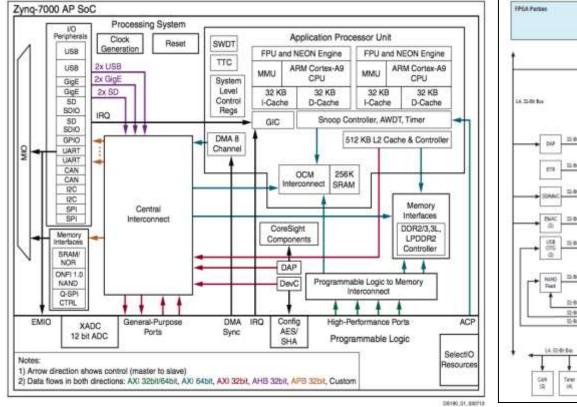
- Glue Logic
- Simple State Machines
- Prototyping

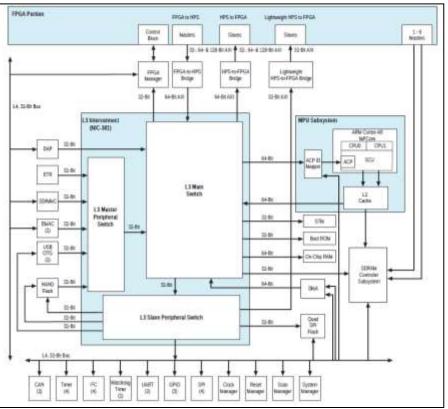

Pro: Easy to use

- Logic that could be connected Like LEGO blocks
- Con: Resource limited
- Many FPGAs needed to implement one single CPU



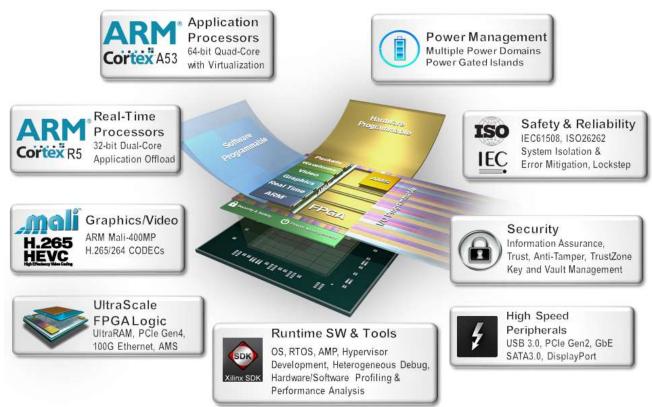
Convergence of Processing Systems


Convergence of Processing Systems



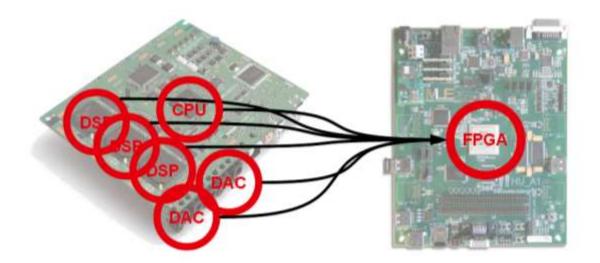
2015-09

Multiple FPGA Vendors With Integrated CPUs



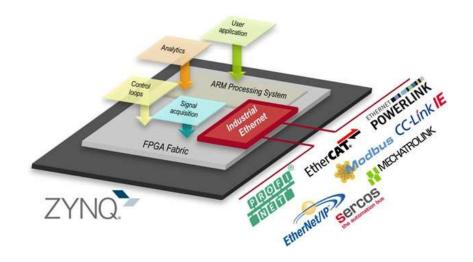
FPGA as All-Programmable Embedded System-on-Chip

- Programmable I/Os (LVTTL, LVDS, High-Speed SerDes)
- Programmable logic functions (State machines and dataflow)
- Programmable block interconnect (Buses and Network-on-Chip)
- Programmable Fixed-Function Processing (Ethernet MAC, Video Codecs)
- Programmable CPUs (for software processing with or w/o Operating Systems)



FPGA Vendors Fully Support Embedded and Safety

FPGA: Software-Defined Printed Circuit Boards


Integrating individual microcontroller, DSP, ADC/DAC and I/O controller devices into one single FPGA-based System-on-a-Chip gives more flexibility for hardware changes without re-spinning a new PCB.

Programmable Connectivity

Different I/O Standards & Protocols

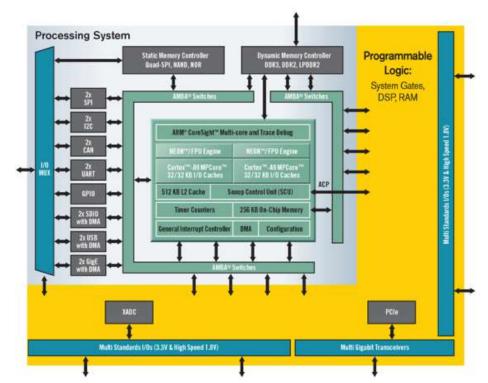
- Single-ended LVTTL
- Differential LVDS
- High-Speed SerDes Transceivers
- Multi-Protocol
 - SPI, IIC, MMC, ...
 - CAN, LIN, FlexRay, ...
 - PCle Gen1, Gen 2, Gen 3, Gen 4
 - SATA-6G, SAS-12G, UFS-12G, ...
 - USB, Ethernet, ...
- Analog I/O via hard blocks or Soft Analog Sigma-Delta Modulators

FPGA Performance Chart

Data from http://www.xilinx.com/products/silicon-devices/fpga.html

FPGA Comparison Table

	Kintex-7	Virtex-7	Kintex UltraScale	Kintex UltraScale+	Virtex UltraScale	Virtex UltraScale+
Logic Cells (K)	478	1,955	1,161	915	4,433	2,863
UltraRAM (Mb)			-	36.0	-	432.0
Block RAM (Mb)	34	68	76	34.5	132.9	94.5
DSP Slices	1,920	3,600	5,520	3,528	2,880	11,904
DSP Performance (symmetric FIR)	2,845 GMACs	5,335 GMACs	8,180 GMACs	6,287 GMACs	4,268 GMACs	21,213 GMACs
Transceiver Count	32	96	64	76	120	128
Maximum Transceiver Speed (Gb/s)	12.5	28.05	16.3	32.75	30.5	32.75
Total Transceiver Bandwidth (full duplex) (Gb/s)	800	2,784	2,086	2,478	5,886	8,384
Memory Interface (DDR3)	1,866	1,866	2,133	2,133	2,133	2,133
Memory Interface (DDR4)	-	-	2,400	2,667	2,400	2,667
PCI Express®	x8 Gen2	x8 Gen3	x8 Gen3	x8 Gen 4 x16 Gen 3	x8 Gen3	x8 Gen 4 x16 Gen 3

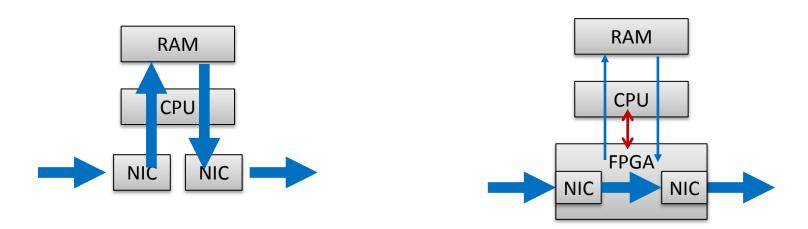


Power vs. Performance of All-Programmable SoCs

SoC FPGA as (yet) another computer

	Intel i7-4770	Xilinx Zynq 7045			
Compute	~100 GFLOPS	5 GFLOPS (PS) 778 GFLOPS (PL)			
TDP	84 W	<20 W (typ)			

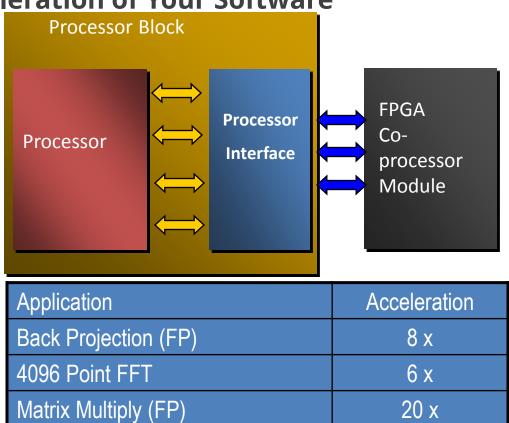
SOC FPGA has 4x more compute With ¼ the power dissipation!


[http://www.xilinx.com/products/technology/dsp.html]

Predictable Architectures For Higher Performance

Current architecture limits maximum performance to total DMA bandwidth.

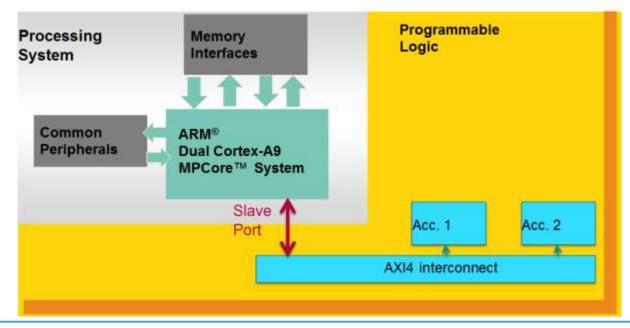
Separate control flow and dataflow for higher bandwidth via FPGA-based inline processing, integrates NIC into FPGA fabric.



Coprocessors Enable Acceleration of Your Software

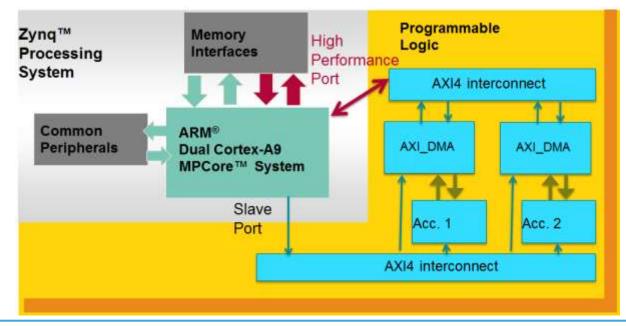
 Direct connection between processor and a soft coprocessor

- Provides offloading of processing task
- Enables Dramatic
 Performance
 Improvements


Page

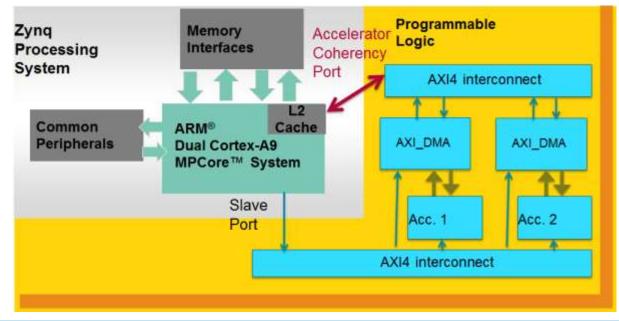
Accelerator Options: Attached as Slave

- Pro: Simple System Architecture, Simple Register Interface
- Con: Limited communication bandwidth



Page

Accelerator Option: Attached as a Master (High Performance Port to Memory)


- Pro: High Data Bandwidth
- Con: Increased Design Complexity, Increased Latency

Accelerator Option: Attached as a Master (Coherent DMA to Level-2 Cache)

- Pro: Low latency, high data bandwidth for short bursts
- Con: Increased design complexity, adverse caching effects on SW

Accelerator Option: ARM Built-in NEON Engine

- 4096 point FFT Complex 32 bit floating point
 - ARM processor alone 830 usec
 - NEON SIMD engine 571 usec
 - Hardware in PL fabric 129 usec

45% FFT Acceleration Using NEON Instructions and ARM NE10 DSP Library

6.4x FFT Acceleration Using ACP Attached Accelerator

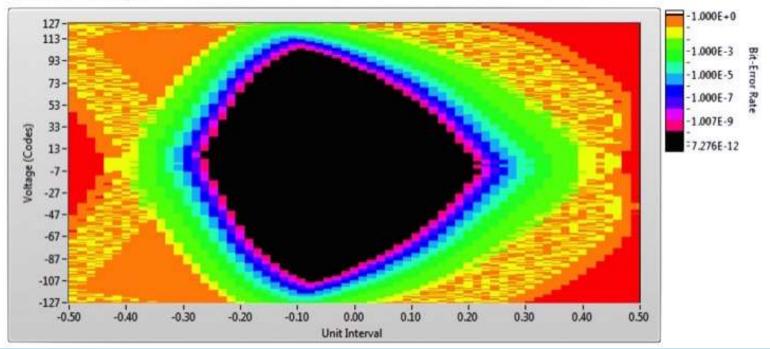
FPGAs Today (2015)

Common Use Cases:

- Complete Embedded Processing in Integrated Systems-on-Chip
- High-Performance Computing, DSP, Terabit Packet processing

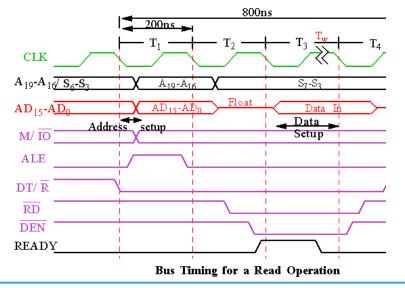
Pro: Lots of resources

- Many CPUs fit into one single FPGA Con: Expert programming skills needed
- I/O standards & protocols in High-Speed SerDes, HW-SW-Interfaces for parallel processing


Design and Verification for FPGAs - I/O Programming

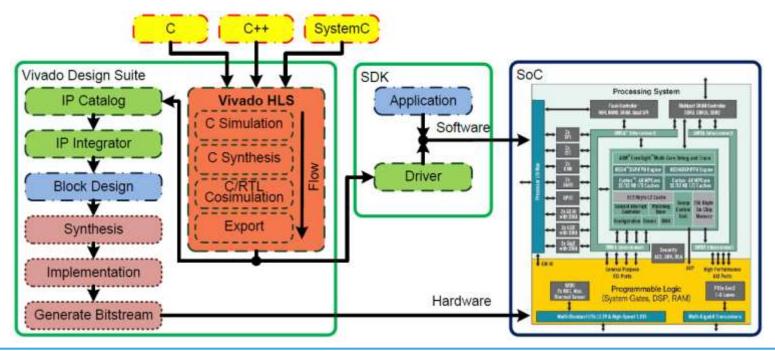
	GTH_	x1Y12	GTH	_X1Y13		GTH_	X1Y14		GTH_X1Y15			
MGT Link Status	2.996 Gbps		3.0 Gbps CPOLLOCKED			2.996 Gbps CPLL LOCKED			3.0 Gbps			
PLL Status									CPLL LOCKED			
Loopback Mode	Near-End PUS		V (Near-End PICS		•	Near-End PMA						
- Channel Raset	Re	set	~	eset	Reset			Reset				
TXRX Reset	TX Reset	RX Reset	TX Reset	Rx Reset		TXReset	RX Reset		TX Reset	RX Res	et.	
TX Polarity Invert	5	1				1.5	1					
TX Error Inject	tnji	ect	Inject			Inject			Inject			
TX Diff Output Swing	(250 mV (0000)		[250 mV (0000)		Ŧ	(250 mV (0000)		-	[250 mV (0000)			
TX Pre-Cursor	U.00 dH (00000)		0.00 dB (00000)		¥	0.00 dH (00000)	0 dB (00000) 🕞 💌		 [0.00 dB (00000) 			
TX Post-Cursor	0.00 49 (00000)		0.00 dB (00000)		-	0.00 dB (00000)	001		 [0:00 GR (00000) 			
RX Polarity Invert	6	1				5	1					
Termination Voltage	GNU		[GND]	3	¥	GND 💌		GNU				
RX Common Mode	aloo mv		Wn 008		*	100 mv		Vm 008				
BERT Settings												
TX Data Pattern	PHES / oit		PHES /-bit		•	PKBS 7-bit		٠	PRES 7-bit			
RX Data Pattern	PHES /-bit		PRBS 7-bit		•	PHBS 7-bit		*	PRES 7-04			
RX Bit Error Radio	2.379	E-002	235	4E-012		2.379	2.379E-002		2.889E-011			
RX Received Bit Count	4.799	9E011 4 247E011 3.869E010			3.462E010							
RX Bit Error Count	1.142	E010	0.0	006000		9 203E008			0.000E000			
BERTReset	Re	set	Reset Reset			Reset						
Clocking Settings	-	~										
TXUSRCLK Freq (MHz)	93	93.77 93.77 93.77		93.77								
TXUSRCLK2 Freq (MHz)	93.	77	9	3.77		93.77		93.77				
RXUSRCLK Freq (MHz)	93.	65	.9	3.77		93	65		90	1.77		
	×									-		

Design and Verification for FPGAs - I/O Verification


Bit Error Ratio

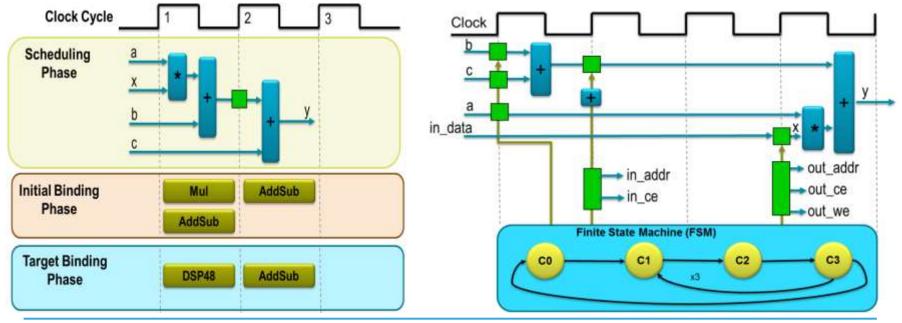
Design and Verification for FPGAs – Digital Logic Design

- Typically Hardware Description Languages (HDL) are used such as Verilog and VHDL.
- Designer must describe all 4 dimensions: functionality, structure, parallelism, timing

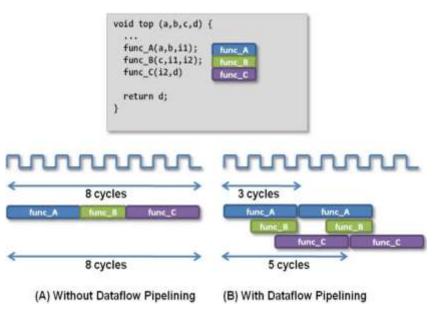



```
ENTITY counter IS
  PORT(count val: OUT integer;
  clk: INOUT BOOLEAN);
END ENTITY counter;
ARCHITECTURE proc OF counter IS
  SIGNAL cnt: integer;
BEGIN
  p: PROCESS
  BEGIN
    WAIT ON clk event and clk=1:
    cnt <= cnt+1;
  END PROCESS p;
  count val <= cnt;
END ARCHITECTURE proc;
```


High-Level Synthesis Design Flow for SoC FPGA


• Input C/C++/SystemC into High-Level Synthesis to generate VHDL/Verilog code

Working Principles of High-Level Synthesis


• Design automation runs scheduling and resource allocation to generate RTL code comprising data path plus state machines for control.

Benefits of High-Level Synthesis

• Automatic performance optimization via parallelization at dataflow level

 Automatic interface synthesis and code generation for variety of real-life HW/SW connectivity

Bus Interfaces			Argument	Variable			Pointer Variable			Array			Reference Variable			
			Туры	Pet	Perceby value			Pass by television			Pase by reference			Pass by reference		
Stream	Lite	Master	1	Interface Type	1	10	0	1	10	0	1	10	0	4	10	0
			4000	ap_none	Ð			Ð						D		
			4000	ap_stable	1											
			4000	ap_ack												
			-	ag_vid						D			-			D
			400	ap_avid					D						D	
				ap_hs												
_			4000	ap_memory							D	D	D			
			4000	ap_filo					1-1			12-17			1000	
				ap_bus			_									
	-			ap_ctri_none												
			4000	ap_ctrl_ha			D									
				ap_stri_chain				1	1							
-	1			S		Sup	ported	Inter	lace		Une	upport	ed int	terface	0	

Modern FPGAs Enable On-Chip-Debug and Verification

- FPGA is not the DUT!
- FPGA can be the DUT plus the TestBench plus extra on-chip debug
- With on-chip logic analyzers, or onchip custom debug circuitry, you can analyze and fix your DUT without messy extra hardware setups!

Agile Design and Verification for Modern FPGAs

Abstraction Layer	Example	Design	Verification			
Board Level	PCB, chipsets, interfaces, media, etc.	PCB, System Design	Rapid Prototyping In System Debugging			
Electronic System Level (ESL)	, , , , ,		System C models, Bus Functional Models			
Functional Blocks	H.264, FEC, AES	In-house or 3rd party IP- Core, High-Level Synthesis	Debug, HighLevel SIM, Co-Simulation			
Digital Logic	FSM, control- and dataflow	VHDL, Verilog, SystemVerilog	RTL Simulation, Logic Analyzer			
Ι/Ο	LVTTL, LVDS, MGT	VHDL, Verilog, Dynamic Reconfiguration Ports	Eye diagrams, Network Analyzer, Oscilloscope			

Contact Information

Missing Link Electronics www.MLEcorp.com

Endric Schubert <u>endric@MLEcorp.com</u> Phone US: +1 (408) 320-6139 Phone DE: +49 (731) 141149-66

