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Heterogeneous Multi-Processing for  

Software-Defined Multi-Tiered Storage Architectures 

 

Who – Xilinx Research and Missing Link Electronics 

Why – Multi-tiered storage needs predictable performance scalability, 

deterministic low-latency and cost-efficient flexibility / programmability 

What – Tera-OPS processing performance in a single-chip heterogeneous 

compute solution running Linux 

How – Combine “unconventional” dataflow architectures for acceleration & 

offloading  with Dynamic Partial Reconfiguration and High-Level Synthesis 
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Xilinx Research and Missing Link Electronics 
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Xilinx – The All Programmable Company 

$2.38B FY15 revenue 

>55% market segment share 

3,500+ employees worldwide 

20,000 customers worldwide 

3,500+ patents 

60 industry firsts 

XILINX - Founded 1984  

Headquarters 

Research and Development 

Sales and Support 

Manufacturing 
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Xilinx Research - Ireland 
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Applications & Architectures 

Through application-driven 

technology development with 

customers, partners, and 

engineering & marketing 
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Vision: The convergence of software and off-the-shelf programmable logic 

opens-up more economic system realizations with predictable scalability! 

 

Mission: To de-risk the adoption of heterogeneous compute technology by 

providing pre-validated IP and expert design services. 

 

Certified Xilinx Alliance Partner since 2011, Preferred Xilinx PetaLinux Design 

Service Partner since 2013. 

 

 

 

Missing Link Electronics 
Xilinx Ecosystem Partner  
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Missing Link Electronics Products & Services 

TCP/IP & UDP/IP Network 
Protocol Accelerators at 
10/25/50 GigE line-rate. 

Patented Mixed Signal 
systems solutions with 
integrated Delta-Sigma 
converters in FPGA logic. 

SATA Storage Extension for 
Xilinx Zynq All-Programmable  
Systems-on-Chip. 

A team of FPGA and Linux 
engineers to support our 
customer’s technology 
projects in the USA and 
Europe. 

Key-Value-Store Accelerator 
for hybrid SSD/HDD 
memcached and object 
storage. 

Low-Latency Ethernet MAC 
form German Fraunhofer 
HHI. 
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Motivation 
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Software significantly impacts 

latency and energy efficiency 

in systems with nonvolatile 

memory 

 

However, software-defined 

flexibility is necessary to fully 

utilize novel storage 

technologies 

 

Hyper-capacity hyper-

converged storage systems 

need more performance, but 

within cost and energy 

envelopes 

Technology Forces in Storage 
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Source: Steven Swanson and Adrian M. Caulfield, UCSD  

IEEE Computer, August 2013 
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CPU system performance scalability is limited 

The Von Neumann Bottleneck [J. Backus, 1977] 
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New Compute Architectures are needed 
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CPU system performance scalability is limited 

Spatial computing offers further scaling opportunity 

Spatial vs. Temporal Computing 
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New Compute Architectures are needed to 

take advantage of this 

Sequential Processing  

with CPU 

 

Parallel Processing  

with Logic Gates 

 

Source: Dr. Andre DeHon, Upenn: “Spatial vs. Temporal Computing” 
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Architectural Choices for Storage Devices 
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Application 

Specific Signal 

Processors 

Digital 

Signal 

Processors 

General 

Purpose 

Processors 

Application 

Specific 

ICs 

Physically 

Optimized 

ICs 

StrongARM110 

 0.4 MIPS/mW 
TMS320C54x 

3MIPS/mW 
ICORE 

20-35 MOPS/mW 

Source: T.Noll, RWTH Aachen 

Field 

Programmable 

Devices 

Tera OPS 
Processing Power 
At low Wattage 
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Use Case: Image/ Video Storage 
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A Flexible All Programmable Storage Node 
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Storage Node 

MPSoC   FPGA 

Reconfigurable 

Processing 
Network 

NVMe 

Drive 

NVMe 

Drive 

NVMe 

Drive 
Monitoring 
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Storage Node 

Meta Data Extraction, e.g. Image Quality Metrics 
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Meta Data Extraction Network 

NVMe 

Drive 

NVMe 

Drive 

NVMe 

Drive 
Monitoring 

• Partially under and over exposed 

• Medium contrast 
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Storage Node 

Processing, e.g. Thumbnailing, Auto-Correction 
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Thumbnailing 

Auto Correction 
Network 

NVMe 

Drive 

NVMe 

Drive 

NVMe 

Drive 
Monitoring 
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Storage Node 

Semantic Feature Extraction, e.g. Classification 
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Semantic Feature 

Extraction 
Network 

NVMe 

Drive 

NVMe 

Drive 

NVMe 

Drive 
Monitoring 

• Group of People 

• Xilinx 

• Outdoor 
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Storage Node 

Semantic Search Support 

Page 18 

Semantic Feature Search Network 

NVMe 

Drive 

NVMe 

Drive 

NVMe 

Drive 
Monitoring 

• Group of People 

• Xilinx 

• Outdoor Scene 
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Storage Node 

Performance Metrics, e.g. Bandwidth, Latency 
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Semantic Feature Search Network 

NVMe 

Drive 

NVMe 

Drive 

NVMe 

Drive 
Monitoring 

• Performance Counter 

• Pattern Matching 

• ID Generation for Tracing 
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Runtime Programmability 
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Architectural Concepts 
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Heterogeneous compute device as a single-chip solution 

 

Direct network interface with full accelerator for protocols 

 

Performance scaling with dataflow architectures 

 

Scaling capacity and cost with a Hybrid Storage subsystem 

 

Software-defined services  

 

 

Key Concepts Presented at SDC-2016 
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SDC-2016:  Single-Chip Solution for Storage 
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SDC-2016: Hardware Accelerated Network Stack 
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Memory  
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Abstraction 

(memcached) 

NVMe 
interface 

Memory  
controller 
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Memory 
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management 

Router 

TCP/IP Full Accelerator 
Supports 10/25/50 

GigE line-rates 
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Now: 10 Gbps demonstrated with a 64b data path @ 156MHz using 20% of FPGA 

Next: 100 Gbps can be achieved by using a 512b @ 200MHz pipeline for example 

 

SDC-2016: Dataflow architectures for 
performance scaling 
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Streaming Architecture: 

Flow-controlled series of processing 

stages which manipulate and pass 

through packets and their associated 

state 

Source: Blott et al:  Achieving 10Gbps line-rate key-value stores with FPGAs; HotCloud 2013 
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SSDs combined with DDRx channels can be used to build high 

capacity & high performance object stores 

Concepts and early prototype to scale to 40TB & 80Gbps key 

value stores 

 

SDC-2016: Scaling Capacity via hybrids 
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Source: HotStorage 2015, Scaling out to a Single-Node 80Gbps Memcached Server with 40Terabytes of Memory 
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SDC-2016: Handling High Latency Accesses 
without Sacrificing Throughput 

Read SSD Read SSD Read SSD 

100usec 

• Dataflow architectures: no limit to number of outstanding requests 

• Flash can be serviced at maximum speed 

Read SSD Read SSD Read SSD 

time 

Read SSD Read SSD Read SSD Read SSD Read SSD 

Request 

Buffer 

Read SSD Read SSD Read SSD Read SSD Read SSD 

Response Response Response Response Response Response Response Response Response Response Response Response Response Response Response 

Cmd: 

Rsp: 

Read SSD Read SSD Read SSD Read SSD Read SSD Read SSD Read SSD Read SSD Read SSD Read SSD Read SSD Read SSD Read SSD 

Page 27 
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Software-Defined Services 
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Spatial computing of additional services at no performance cost until 

resource limitations are reached 

 

Software-Defined Services Software-Defined Services 
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Software-Defined Services 
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Offload engines for Linux Kernel Crypto-API 

 

Non-intrusive latency analysis via PCIe TLP “Tracers”  

 

Inline processing with Deep Convolutional Neural Networks 

 

Declarative Linux Kernel Support Partial Reconfiguration 

Software-Defined Services – Proof-of-Concepts 
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Crypto-API is a cryptography framework in the Linux kernel used 

for encryption, decryption, compression, de-compression, etc. 

Needs acceleration to support processing at higher line-rates 

(100 GigE). 

Open Source software implementation  that follows a streaming 

dataflow processing architecture 

– Hardware Interface: AXI Streaming 

– Software/ Hardware Interface: SG-DMA in, SG-DMA out 

High-Level Synthesis generated accelerator blocks from 

reference C code 

Software-Defined Services - Example 1) 
Accelerating the Linux Kernel Crypto-API 
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System Architecture of Crypto-API Accelerator 
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Performance analysis and ongoing monitoring of bandwidth and 

latency in distributed systems is difficult. 

– Round-trip times 

– Time-outs 

– Throttling 

When done in software, results get distorted by additional 

compute burden. 

When done in Programmable Logic, it can be (clock cycle) 

accurate and non-intrusive via adding so-called “Tracers” into 

the dataflow. 

Software-Defined Services - Example 2)  
Non-Intrusive Latency Analysis via PCIe TLP Tracers 
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Tracers within PCIe Transaction Layer Packets (TLP)  

– Based on addresses/ IDs, detected at PCIe switches and endpoints 

– Transparent for transport layer (Ethernet, etc) 

Tracer-Based Performance Analysis 
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Full implementation on network with multiple boards 

Proof-of-Concept Implementation 
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Latency Monitoring WithTracers - Overview 
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Latency Monitoring with Tracers - Results 
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Deep Convolutional Neural Networks (CNN) have demonstrated 

values in classification, recognition and data-mining. 

However, CNN can be very compute intensive, when done at 

single or double float precision. 

Recent approaches involve reduced precision (INT8, or even 

less), as well as dataflow-oriented compute architectures. 

– Taps into tremendous compute power within Programmable Logic 

 

What if, CNN can be run close to the data, within the storage 

node? 

Software-Defined Services - Example 3) 
Inline Processing w/ Neural Networks 
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Streaming Dataflow Processing in BNN Inference 

Page 39 

Courtesy “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference”,  

Umuroglu, Fraser, Blott et al., 25th Symp. on FPGA, 2017 
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BNN Results 
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Courtesy “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference”,  

Umuroglu, Fraser, Blott et al., 25th Symp. on FPGA, 2017 



© MLE 
. 

Supports both full and partial reconfiguration of FPGAs 

Adds a device tree interface for controlling the partial 

reconfiguration process 

Handles all FPGA internal processes 

Abstract device and vendor neutral interface 

 

Software-Defined Services – Infrastructure 
Linux Kernel FPGA Framework 
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Linux FPGA Framework Architecture 
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A Declarative Partial Reconfiguration Framework 
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Platform: ZC706 

Bitstream Size: 5.9 MiB 

Overall latency: ≈135 ms 
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Conclusion & Outlook 
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Trend towards unconventional architectures 

– A diversification of increasingly heterogeneous devices and systems 

– Convergence of networking, compute and storage within single 

nodes 

– CPU-only processing runs out of steam 

Key concepts for demonstrating Software-Defined Services 

– Offload engines for Linux Kernel Crypto-API  

– Non-intrusive latency analysis via PCIe TLP “Tracers” 

– Inline processing with Deep Convolutional Neural Networks 

Results: 

– On commercially available hardware 

– Available for collaboration or in-house development 

 

Conclusion 
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Xilinx Zynq UltraScale+ MPSoC (XCZU19EG) 

– ARM Cortex A-53 quad-core, ARM Coretx R5 dual-core, 1,968 DSP slices 

– 1.1 million system logic cells, 34Mbit BRAM, 36Mbit UltraRAM 

– 5x PCIe Gen3/4, 4x 100GigE, 44x 16.3Gbps, 28x 32.72Gbps 

Single-Chip Implementation 
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Sidewinder-100 from Fidus Systems 

Accelerator IP and Linux BSP from MLE 

Commercially Available Development System 
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Backup 
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Binarized Neural Networks (BNN):  

Training with float, CNN Inference runs at reduced precision 

– Less data (Mbytes) for parameters, less compute burdon. 

Reduced Precision Neural Networks 
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Binar ized Neural Networks: Training Neural Networks with Weights and Activations Constrained to + 1 or − 1

Table 1. Classification test error rates of DNNs trained on MNIST (MLP architecture without unsupervised pretraining), CIFAR-10

(without data augmentation) and SVHN.
Data set MNIST SVHN CIFAR-10

Binarized activations+weights, during training and test

BNN (Torch7) 1.40% 2.53% 10.15%

BNN (Theano) 0.96% 2.80% 11.40%

CommitteeMachines’ Array (Baldassi et al., 2015) 1.35% - -

Binarized weights, during training and test

BinaryConnect (Courbariaux et al., 2015) 1.29± 0.08% 2.30% 9.90%

Binarized activations+weights, during test

EBP (Cheng et al., 2015) 2.2± 0.1% - -

Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -

Ternary weights, binary activations, during test

(Hwang & Sung, 2014) 1.45% - -

No binarization (standard results)

Maxout Networks (Goodfellow et al.) 0.94% 2.47% 11.68%

Network in Network (Lin et al.) - 2.35% 10.41%

Gated pooling (Lee et al., 2015) - 1.69% 7.62%

Figure 1. Training curves of a ConvNet on CIFAR-10 depend-

ing on the method. The dotted lines represent the training costs

(square hinge losses) and the continuous lines the corresponding

validation error rates. Although BNNs are slower to train, they

are nearly asaccurate as 32-bit float DNNs.

and AdaMax variants, which are detailed in Algo-

rithms 3 and 4, whereas in our Theano experiments,

we use vanilla BN and ADAM.

2.1. MLP on MNIST (Theano)

MNIST is an image classification benchmark dataset (Le-

Cun et al., 1998). It consists of a training set of 60K and

a test set of 10K 28 ⇥ 28 gray-scale images represent-

ing digits ranging from 0 to 9. In order for this bench-

mark to remain a challenge, we did not use any convo-

lution, data-augmentation, preprocessing or unsupervised

learning. The MLP we train on MNIST consists of 3 hid-

den layers of 4096 binary units (see Section 1) and a L2-

SVM output layer; L2-SVM has been shown to perform

better than Softmax on several classification benchmarks

Figure 2. Binary weight filters, sampled from of thefirst convolu-

tion layer. Since we have only 2k 2

unique 2D filters (where k is

the filter size), filter replication is very common. For instance, on

our CIFAR-10 ConvNet, only 42% of thefilters are unique.

(Tang, 2013; Lee et al., 2014). We regularize the model

with Dropout (Srivastava, 2013; Srivastava et al., 2014).

The square hinge loss is minimized with the ADAM adap-

tive learning rate method (Kingma & Ba, 2014). We use

an exponentially decaying global learning rate, as per Al-

gorithm 1, and also scale the learning rates of the weights

with their initialization coefficients from (Glorot & Bengio,

2010), as suggested by Courbariaux et al. (2015). We use

Batch Normalization with aminibatch of size 100 to speed

up the training. As is typical, we use the last 10K samples

of the training set as a validation set for early stopping and

model selection. We report the test error rate associated

with thebest validation error rateafter 1000 epochs (wedo

not retrain on the validation set). The results are reported

in Table 1.

2.2. MLP on MNIST (Torch7)

Weuseasimilar architecture asin our Theano experiments,

without dropout, and with 2048 binary units per layer in-

stead of 4096. Additionally, we use the shift base AdaMax
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Design automation runs scheduling and resource binding to generate 

RTL code comprising data paths plus state machines for control flow 

Working Principles of High-Level Synthesis 
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Automated performance 

optimizations via parallelization 

at dataflow level 

Benefits of HLS-Based C/C++ FPGA Design 
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Automatic interface synthesis 

and driver code generation for 

HW/SW connectivity 
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Reconfiguration Performance  
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Scheduling Latency - Profiling Results 

53 

Measurement of example system (AES accelerator on ZC706 board) 

Measured latencies via ftrace function entry and exit timestamps 

 

Bitstream Size: 5.9 MiB 

Overall latency: ≈135 ms 
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Endric Schubert 

Email: endric@mlecorp.com 

 

Ulrich Langenbach 

 Email: ulrich@mlecorp.com 

 

Missing Link Electronics  

www.missinglinkelectronics.com 

Ph US: +1-408-475-1490 

Ph GER: +49-731-141149-0 

Contact 
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