
Paper

Analyzing the Generation and Optimization of an
FPGA Accelerator using High Level Synthesis

Sebastian Kaltenstadler
Ulm University
Ulm, Germany

sebastian.kaltenstadler@missinglinkelectronics.com

Ulrich Langenbach
Beuth University of Applied Sciences

Berlin, Germany
ulrich.langenbach@beuth-hochschule.de

Stefan Wiehler
Missing Link Electronics

Neu-Ulm, Germany
stefan.wiehler@missinglinkelectronics.com

Abstract—Multi-Processor System-on-Chip FPGAs can utilize
programmable logic for compute intensive functions, using so-
called Accelerators, implementing a heterogeneous computing
architecture. Thereby, Embedded Systems can benefit from the
computing power of programmable logic while still maintain-
ing the software flexibility of a CPU. As a design option to
the well-established RTL design process, Accelerators can be
designed using High-Level Synthesis. The abstraction level for
the functionality description can be raised to algorithm level
by a tool generating HDL code from a high-level language like
C/C++. The Xilinx tool Vivado HLS allows the user to guide the
generated RTL implementation by inserting compiler pragmas
into the C/C++ source code. This paper analyzes the possibilities
to improve the performance of an FPGA accelerator generated
with Vivado HLS and integrated into a Vivado block design. It
investigates, how much the pragmas affect the performance and
resource cost and shows problems the tool has with coding style.

I. INTRODUCTION

For modern computing systems it is getting more popular to
use heterogeneous computer architectures to further increase
computing power. There are multiple ways to compensate
the stagnation of single core performance of CPUs, ranging
from instruction set extensions, multi core processors and
GPUs to coprocessors on FPGAs. Cryptographic and hashing
functions for example can be accelerated on an FPGA. The
advantages of an implementation on an FPGA are almost
ASIC-like computing performance, quick adaption to new
protocols and standards as well as low energy consumption
[7]. To develop such a coprocessor, the logic of the algorithm
has to be described with VHDL/Verilog on Register Transfer
Level. This is complicated because of the high level of detail
and the high susceptibility to errors due to the low level of
abstraction on Register Transfer Level. To lower development
time, one can raise the abstraction level to Algorithm level
through High-Level Synthesis (HLS). Instead of a complicated
description of the accelerator in VHDL/Verilog, High-Level
Synthesis uses standard C/C++ code to describe the logic.
The HLS-Tool Vivado-HLS offers compiler pragmas to further
define the hardware architecture of the C/C++ code. With those

pragmas, the developer can create different implementations
of the same algorithm without touching the functionality by
just inserting or deleting one line in the source code. With
those capabilities, Vivado-HLS can be used for design space
exploration. In this paper, an FPGA coprocessor is used to
accelerate AES encryption and decryption calls from the Linux
Kernel Crypto API.

II. DEFINITIONS AND ABBREVIATIONS

A. Definitions

This paragraph specifies how common FPGA build flow
terms are used in this paper.
Synthesis is the whole process of High-Level Synthesis. It

basically summarizes all design steps from Vivado HLS.
Implementation summarizes all steps from Vivado.
Vivado Synthesis is the Synthesis step inside of the Imple-

mentation.
Bitstream is the output of the implementation. It is used to

program the FPGA.

B. Abbreviations

This paragraph gives a short summary of all abbreviations
used in this paper.
AES stands for Advanced Encryption Standard. See sec-

tion III-A for an explanation.
BRAM stands for Block RAM. BRAM is one of the resources

on an FPGA. BRAMs are arranged in slices of 36 KBit.
FF stands for Flip Flop. FFs are one of the resources on an

FPGA.
HLS stands for High-Level Synthesis. See section III-C for a

brief explanation.
II stands for Initiation Interval. See section III-B for an

explanation.
LUT stands for Lookup table. LUTs are one of the resources

on an FPGA. They build the logic gates inside of the
FPGA.

RTL stands for Register-Transfer Level.

www.embedded-world.eu

III. BASICS

This chapter gives a short summary of the most important
basics of the paper. It explains how AES works, what the
design steps are within Vivado HLS and how optimization
with HLS works.

A. AES

The Advanced Encryption Standard (AES) [4] is an encryp-
tion algorithm developed in 2000 by Joan Daemen and Vincent
Rijmen and is one of the most important encryption algorithms
today. It is a symmetric block cipher, which means, it uses
the same key for en- and decryption. Block cipher means, it
encrypts and decrypts blocks of data of a constant size, in this
case the block size is 128 bits or 16 Bytes respectively. These
16 Bytes are arranged in a 2-dimensional 4x4-array called
state. The algorithm consists of four base operations repeated
in multiple rounds. These operations are AddRoundKey, Sub-
Bytes, MixColumns and ShiftRows. AddRoundKey is a simple
XOR-connection between the state and the round key. Sub-
Bytes replaces all Bytes of the state according to a substitution
box, called S-Box. In this paper, the SubBytes operation was
implemented using arrays with precomputed values as Lookup
tables (this does not mean the LUT hardware resource on the
FPGA, but the basic concept of Lookup tables in software).
ShiftRows does a cyclic shift on the rows of the state according
to its row number. MixColumns mixes the 4 Bytes so every
input Byte affects every output Byte. MixColumns is like
SubBytes implemented using precomputed arrays as Lookup
Tables. To encrypt more than 16 Bytes, a operation mode is
required. In this work Cipher Block Chaining (CBC) is used.
In this mode, the ciphertext of a block depends on the plaintext
and the ciphertext of the previous block. This data dependency
cannot be resolved; thus the encryption cannot be pipelined.
In decryption however this dependency does not exist, which
enables pipelining.

B. Performance of digital circuits

To evaluate the results of High-Level Synthesis, we need
to measure the performance of an FPGA accelerator which
is determined by its throughput. The throughput is influenced
by many different characteristics of the accelerator, which are
listed below:
Clock period is the time period of one clock cycle. All

registers in the design are connected to the same clock
to synchronize read and write operations.

Blocksize is the amount of data that can be read and computed
at once. The unit is bit or byte. In this paper, the blocksize
is 128 bit or 16 Byte.

Latency is the number of clock cycles after reading data until
the result is available at the output registers.

Initiation Interval is the number of clock cycles after reading
a block, until the circuit can read new data.

With these quantities the throughput can be computed as
shown in eq. (1).

BW =
BStotalf

Linit + Lsingle + II(n− 1)
(1)

Fig. 1. Design flow of Vivado HLS [2].

with the throughput BW , the total amount of data BStotal,
the clock frequency f , the latency for initialization process
Linit, the latency for a single block of data Lsingle, the initial
interval II and the total number of data blocks n, which
is BStotal/16 Byte. Without pipelining, the initiation interval
and the latency for a single block are the same, so the terms
are interchangeable. Since the initial latency is constant with
around 1000 clock cycles, it does not influence the throughput
for a big amount of data. This simplifies the formula to eq. (2).

BW =
BStotalf

IIn
(2)

This formula assumes, that there is no input data stream stall
when processing a stream at the input of the accelerator and
the data is read from the output immediately, so it does not
get slowed down by back pressure. The result of this formula
is used as a metric for the performance of the generated
accelerators.

C. High-Level Synthesis with Vivado HLS

High-Level Synthesis is the Synthesis of a hardware de-
scription on Register-Transfer-Level (RTL) from a description
on algorithm level. In this paper, we generate an AES ac-
celerator from C/C++ source code with Vivado HLS. For a
more detailed introduction to HLS see [6]. Figure 1 shows
the design flow of Vivado-HLS. The source code can be
any C/C++ implementation, as long as it only makes no
use of dynamic memory allocation. It is recommended to
use a generic implementation instead of an optimized one
for a special compiler or processor. Since an FPGA works
differently than a normal CPU, optimizations for a CPU are
not suited for an FPGA and might even worsen the results. The
correctness on the algorithm level of the code can be checked
with the C-Simulation using a testbench. Now, the interface of
the accelerator has to be declared with the Interface pragma.

It describes how the interface has to be generated from the
parameters of the top level function and which type of bus
has to be used. In our case, we used an AXI-Stream interface
for the data input and output with an additional AXI-Lite
interface for control signals like starting the encryption or
changing the encryption key. Once the code is synthesizeable,
it can be optimized using additional pragmas. A list of all used
optimization pragmas and a short description is given below:

Loop Tripcount lets the user specify a minimum and max-
imum number of iterations for a loop. This does not
influence the synthesis, but helps to get a precise latency
estimation.

Array Partition partitions an array in multiple smaller ar-
rays. The default behavior is to only generate one input
and output port for every array. By partitioning it into
smaller arrays with an input and an output port for each
sub-array, the manipulation of single cells of the array
can be parallelized.

Loop Unroll generates multiple instances of the code body of
a loop. If there are no data dependencies between loop
iterations, they can be parallelized by creating multiple
instances of the body.

Pipeline creates a pipelined architecture for a specified func-
tion. This increases the throughput by reducing the initi-
ation interval.

Inline eliminates the hierarchy level of sub-functions and
dissolves their logic into the logic of the caller func-
tion. The default behavior of Vivado HLS generates one
module for every function in the source code with a sub-
module for every sub-function. The logic optimization
only works inside a module on one hierarchy level. By
eliminating those borders with inlining, it is easier for the
optimization to simplify and shorten the RTL description.

Before starting the C-Synthesis, we need to specify a target
frequency, that specifies the frequency, at which the accelerator
should operate.
The C-Synthesis generates the VHDL/Verilog code from the
C/C++ source code. The RTL code can be verified using
the C/RTL-Co-Simulation. Now the code gets packaged and
exported with the IP-Packager and can later be included into
a Vivado block design. More details to Vivado HLS can be
found in [2].

IV. TEST SETUP

Figure 2 shows the complete design flow with Vivado HLS
and Vivado. A detailed view of the Synthesis is depicted
in fig. 1. Both tools, Vivado and Vivado HLS, were used
in version 2016.2. Newer versions could not be used be-
cause of incompatibilities with the hardware driver seen in
fig. 4. Starting point is a C/C++ implementation of the AES-
Algorithm. The one used for this paper can be found at [8].
After running through all the steps explained in section III-C
Vivado HLS returns estimations for the resource demand and
the performance of the accelerator, including the initiation
interval and latency. The user can go through the whole

Synthesis
Implementation

Vivado Synthesis

Fig. 2. Design flow using Vivado HLS and Vivado [3].

hierarchy of the design and see these estimations for every
single sub-module.

The generated IP Core is part of the block design displayed
at fig. 3 at the position highlighted in red. The clock is set to
the estimated clock given by Vivado-HLS. After implemen-
tation, Vivado returns the actual resource costs and a timing
analysis, including signal paths that fail the timing constraints.

Performance tests are conducted on a Xilinx ZC706 board,
featuring a Zynq 7045 SoC. Through a custom device driver,
explained in [1], the Linux OS on the processing system
(PS) of the Zynq SoC on the board is able to accelerate
AES calls of the Linux Kernel Crypto API with the FPGA

Zynq 7 Processing System

HP0 GP0

AXI Interconnect

AES

AXI DMA

ctrl

src dst

ZYNQ

AXI_LITE

S2MMMM2S

SG
MM2S
S2MM

AXI Interconnect

AXI Stream
AXI Memory Mapped
AXI Lite

Fig. 3. Vivado block design [1].

Crypto API

AES

AXI
DMA

PS PL

dm-crypt

AXI

Kernel space

User space
OpenSSL

…

Request
Queue

…

Driver
Priority Hardware

Driver

IPsec

AES SHA-2

Request
Queue

Software Driver

AXI

GnuTLS

Fig. 4. Test setup with connection to the Crypto API [1].

accelerator. Figure 4 shows the whole test setup. This does
not always work, there are two different types of failure
that we observe. The first one is the creation of incorrect
logic. When the driver is loaded, the Crypto-API verifies the
correctness with a testbench. If the generated logic is incorrect,
this returns an error message stating that the ciphertext is
wrong. With the other type of failure, the measurement halts
at the initialization of the measurement. Since both, driver and
functionality, always stay the same for all tests, this points to
a failure in the Synthesis. In the results paragraph we do not
differ between the two types of failure and only state if the
design passed the test or not.

The accelerator is generated with different sets of optimiza-
tion pragmas in five tests. Each test contains 9 designs with
the same set of pragmas, but a different target frequency. It
ranges from 100 MHz to 260 MHz in steps of 20 MHz. For
higher target frequencies than 260 MHz, the design always
fails to meet the timing constraints, so these implementa-
tions/frequencies are not considered in the evaluation. The
different optimizations are as follows:
Test 1 contains no pragmas for optimizing the architecture.

The Interface pragma is inserted, because it is necessary
for the tool to synthesize the IP core. Also the Loop
Tripcount pragma is inserted to generate more precise
estimation results for performance. With this pragma, the
user is able to define a maximum and minimum amount
of loop iterations for the latency estimation.

Test 2 contains the Array Partition pragma. By default, for
every array in the source code, the Synthesis generates
one BRAM with only one read and write port. This
decreases the performance, because the single array el-
ements can only be read or modified in a sequential
manner. By partitioning the array into multiple smaller
memory blocks with a read and write port for each block,
access to different array elements can be parallelized.

Test 3 extends Test 2 with added Loop Unrolling pragma. It
creates multiple instances of the loop body to calculate
the results in parallel as long as there are no data
dependencies in between the loop iterations.

Test 4 extends Test 3 with added Pipeline pragma. The
Pipeline pragma allows the user to define an Initiation
Interval for the pipeline. We used 10, 3 and 1 clock
cycle as Initiation Interval to test the influence of different
intervals on the performance and the resource cost.

Test 5 extends Test 4 with an initiation interval of 1 clock
cycle with added Inline pragma. The Inline Pragma shifts
the inlined function on a higher hierarchy level and
eliminates hierarchical borders. This does not optimize
the architecture directly, but the following optimization
step in the Synthesis has a lot more freedom to combine
operations and getting rid of unnecessary registers in
between operations, which reduces latency and resource
cost.

Since the goal is to test the capabilities of the tool and
compare the influence of different optimizations, the optimiza-
tions focus on the decryption of AES. The encryption and
decryption consist of the same operations in different order,
but with the operation mode CBC, pipelining is only possible
for the decryption. The results in section V only contains the
results of the decryption, since the rest (encryption and key
expansion) are not included in the optimization process.

V. RESULTS

The highest RTL hierarchy level of the decryption always
looks the same, no matter which optimizations were applied.
The RTL description is displayed in fig. 5. While the two
blocks CBC-XOR and AES-Decryption are directly influenced
by the C/C++ source code, the FSM (finite state machine) is
automatically generated.
The tool always returns a specific estimation for resource costs
and performance. In the following paragraphs, the ranges given
for some values are the the minimum and maximum values
for the 9 different target frequencies.

A. Test 1: no pragmas

The code without any optimization pragmas generates an
implementation with low resource costs. The estimated de-

Input1

Output

AES Decryption

State

CBC-XOR

Input2
Output InputIV

OutputInput1

State1

StateN

..
..

ciphertext

FSM

plaintext

AES-CBC-Decryption

Fig. 5. Synthesized Logic AES-CBC-Decryption

mand of LUTs ranges from 3654 to 3660, the amount of FFs
ranges from 592 to 1155 and 9 BRAM slices are required.
While the estimation of the BRAM is accurate, the actually
required amount of LUTs and FFs is lower than the estimation.
The required amount of LUTs ranges from 593 to 638, the
required amount of FFs from 573 to 689. The minimal latency
ranges from 1011 to 1683, the maximal latency from 1371 to
2235 clock cycles, the initiation interval is identical. This leads
to an estimated throughput of up to 3.06 MB/s according to
eq. (2) for a target frequency of 260 MHz. The maximum for
the target frequency seems to be around 180 MHz, since all
higher frequencies fail to meet the timing constraints after the
implementation. The actual measurement of the throughput
failed for all designs in Test 1.

B. Test 2: array partitioning

Due to the added array partitioning, the estimated and
the actual performance and resource requirements rise. The
BRAM estimation and the actually required amount rise to
40 BRAM slices. The estimated number of LUTs range from
4918 to 5044, the FFs from 905 to 1946. The minimal latency
ranges from 416 to 895 clock cycles, the maximum from
562 to 1203. The highest estimated throughput is 6.55 MB/s
for a target frequency of 240 MHz. The actual resource
requirements are again lower than the estimation. The LUT
demand ranges from 2363 to 2679, the FF demand from 880
to 1212. All designs passed the functionality test, the highest
throughput was 5.16 MB/s for a target frequency of 240 MHz.

C. Test 3: loop unrolling

The loop unrolling further increases the performance and
the resource costs. The estimated number of LUTs drops to a
range from 4602 to 4883. This is because the loop calculations
now happen in parallel. Before, there was only one instance,
which was reused for every loop iteration. That required
a control logic which disappears for parallel computation.
The amount of registers rises, since every register has to be
duplicated for every parallel path. This leads to an increase of
the estimated FFs to a range of 1590 to 2529. The required
BRAM stays the same, since the methods that require BRAM

do not contain loops. The minimal latency ranges from 50
to 131, the maximum from 70 to 182. The actual amount of
LUTs ranges from 1774 to 2338, the FFs range from 1592 to
2012. The BRAM demand and estimation are identical. Apart
from a target frequency of 180 MHz, all designs passed the
measurement test with the highest throughput of 26.15 MB/s
for a target frequency of 120 MHz.

D. Test 4: pipelining
1) Initiation Interval = 10 clock cycles: Pipelining only

has a small impact on the minimal latency, but the maximal
latency is now equal to the minimal latency. This is necessary,
because pipelining needs a constant latency. For an initiation
interval of 10 clock cycles it ranges from 44 to 131 clock
cycles, the initiation interval is the specified 10 clock cycles.
The LUTs estimation ranges from 7519 to 9693, the estimated
FFs range from 1982 to 4247. The BRAM estimation rises to
80 slices. Since pipelining requires additional instances of all
base operations, the resource consumption increases. 189 MHz
seems to be the maximum for the estimated frequency, since
no design achieves a higher frequency. The highest estimated
throughput is 301 MB/s. After implementation, the required
amount of LUTs is between 2617 and 4028. The required FFs
range from 1736 to 3820. Apart from a target frequency of
180 MHz, all designs pass the measurement test. The highest
measured throughput is 27.24 MB/s for a target frequency of
100 MHz. This is significantly lower than the estimation of
301 MB/s. The reason for this is explained in section VI, since
it influences all pipelined designs.

2) Initiation Interval = 3 clock cycles: The resource costs
increase again, since the synthesis now creates 5 instances of
all base operations. The latency ranges from 44 to 88 clock
cycles. The LUTs estimation ranges from 17499 to 22541, the
FFs from 2381 to 7097. The BRAM estimation rises to 200
slices. The maximum for the estimated frequency seems to
be 189 MHz again, the maximal estimated throughput is 1006
MB/s. The implementation only needs between 4800 and 6635
LUTs and between 2271 and 3915 FFs. Apart from a target
frequency of 180 MHz all designs pass the measurement test.
The highest throughput was achieved by the design with a
target frequency of 140 MHz with 31.28 MB/s, which is again
significantly lower than the estimations.

3) Initiation Interval = 1 clock cycle: There are now 14
instances of every base operation. This leads to a LUT esti-
mation between 44790 and 45047 and a FF estimation between
3077 and 15603. The BRAM estimation and utilization rises
to 528 slices. The latency drops to a range from 42 to 84 clock
cycles, the highest estimated throughput is 3019 MB/s for
target clocks between 180 and 260 MHz. The actually required
amount of LUTs ranges from 4653 to 5366, the FFs from 1085
to 6857. Target frequencies from 120 to 180 MHz fail, the rest
passes the measurement test. The highest throughput is 30.36
MB/s.

E. Test 5: Inlining
Inlining the base operations decreases the latency to a range

from 28 to 68 clock cycles. The estimated amount of LUTs

ranges from 13660 to 15327 and the estimated FFs range
from 3431 to 13239. The estimated BRAM usage stays at
528 slices. The maximal estimated throughput is 93 MB/s for
a target frequency of 140 MHz when taking into account that
pipelining does not work. The actual LUT usage ranges from
5713 to 8163, the FFs from 3288 to 9918. No design passed
the measurement test.

VI. ANALYSIS

All pipelined designs have an increased resource utilization
in comparison to the designs without pipelining due to
additional instances. The analysis with the Integrated Logic
Analyzer shows, that there is always valid data at the input
and the output always waits for the accelerator to read data.
So the problem does not originate from the environment, but
from the accelerator itself.
So for example we investigate the design of Test 4 with an
initiation interval of 10 clock cycles and a target frequency
of 100 MHz. This design should achieve up to 181.81 MB/s,
but the measurement only shows a throughput of 27.24
MB/s. The synthesis shows, that it created an additional
instance of every base operation and they still exist after the
implementation. Pipelining with an initiation interval of 10
clock cycles means, that one instance can only be occupied
for 10 clock cycles by a single data block.
AES consists of many rounds, as explained in section III-A,
which consist of the four base operations AddRoundKey,
SubBytes, MixColumns and ShiftRows. Depending on the
key size there are between 10 and 14 complete rounds per
data block. The scheduling diagram in Vivado HLS shows,
that SubBytes and MixColumns are occupied for 2 clock
cycles in each round. This sums up to 20 and 28 cycles
for SubBytes and MixColumns each for every data block.
Divided by two because of the additional instances of the
base operations, this results in 10 to 14 clock cycles with an
initiation interval of 10 clock cycles. So there need to be at
least 3 instances of every base operation to actually enable
pipelining with an initiation interval of 10 clock cycles.
For the same reason, the design with an initiation interval
of 3 clock cycles would need at least 14 instances of every
base operation. For an initiation interval of 1 clock cycle
and a target frequency of 100 MHz the High-Level Synthesis
generates 14 instances of all operations plus an additional
AddRoundKey instance for the first round. Because of the
operations SubBytes and MixColumns always being occupied
for 2 clock cycles at a time, it is still not possible to achieve
the requested initiation interval.
To check if this problem is specific for the tool version,
we repeated the synthesis step of test 4 with tool version
2017.2, which was the newest available version at the
time. The synthesis results though stayed the same. The
resource estimations were identical as well as the generated
architecture. Even with this version, there were always to few
instances of the base operations to enable pipelining.
The goal of this paper was to evaluate the High-Level
Synthesis with Vivado HLS. The generation of an FPGA

accelerator with High-Level Synthesis is faster and easier
compared to writing HDL code. It is possible to generate a
completely different architecture for the accelerator within
60 to 90 minutes including synthesis and implementation.
Optimization pragmas like array partitioning and loop
unrolling work just like they are supposed to. This enables
the user to generate accelerators that are faster than most
software solutions for fitting problems like encryption or hash
algorithms.
Pipelining however does not provide the throughput it should.
Inlining can even change the logic and thus breaking the
design if applied at the wrong place. The tool seems to
heavily depend on the correct coding style. During the whole
optimization process, only once an error message occurred
stating that the placed optimization pragma does not work at
this position. This was when trying to pipeline the encryption
despite the operation mode making it impossible. In every
other case, the tool stated a correct synthesis, the problems
were only observed when actually loading the design to an
FPGA and measuring the actual throughput. This behavior
is not reliable and not usable for real-life applications. The
problems with pipelining and inlining keep the user from
creating high performance, high throughput designs.
Another less important problem is, that the resource
estimations, especially for the LUTs, is way higher than
the actual usage after implementation. A possible reason
for this could be an incorrect state machine which creates
unnecessary states and logic that later gets optimized away
through logic optimization in the implementation.

VII. OUTLOOK

There are multiple ways of progressing with this work. In
this paper, we changed the target frequency for the High-
Level Synthesis. By keeping the same design and increasing
the frequency at the implementation step by step could show,
how accurate the frequency estimation is and give another
possibility to increase the throughput. One could also compare
the results of different implementations to find the best coding
style for High-Level Synthesis. One could also try out single
pragmas for optimization to see the individual effect of the
pragmas, but the results of this step highly depend on the
algorithm and its implementation, so there would not be a
general knowledge gain out of these tests.

VIII. CONCLUSION

In this work we showed how to generate an AES FPGA
accelerator with High-Level Synthesis. It turned out to be
faster and easier compared to standard RTL development
with VHDL/Verilog. Especially for developers, who are not
experienced in RTL development, it is a way to still profit
from the compute power of an FPGA. It is also useful for
design space exploration, since it it possible to generate
a completely different architecture within minutes by just
inserting or removing a compiler pragma.

However the tool is not ready to be used for real-life applica-
tions yet. A main flaw is the difficulties with the coding style.
It is probably necessary to write optimized code for the High-
Level Synthesis, comparable to code optimized for special
processors. Yet this would take away the biggest advantage
of being easy to use. In the current state it is not possible for
the user to generate reliable high performance, high throughput
designs.
Another problem is the inaccuracy of the resource estimations,
apart from the BRAM estimations. The estimations were
always too high. The real LUT usage is only a fraction of
the estimation. This would make it possible to implement a
design even though the tool estimates a usage of more than
100%. In the current state, the tool has to improve on its
reliability before it can be integrated into a professional real-
life workflow.

REFERENCES

[1] S.Wiehler, CPU-Offloading von Transformationsfunktionen aus dem
Linux-Kernel. 2016.

[2] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis(UG902),
v.16.2. 2016.

[3] Xilinx, https://www.xilinx.com/content/dam/xilinx/imgs/applications/isolation-
design-flow/idf-flowchart.jpg.thumb.319.319.png. 16.1.18.

[4] National Institute of Standards and Technology, FIPS PUB 197: Advanced
Encryption Standard (AES). 26.1.2001.

[5] Xilinx, Vivado Design Suite: AXI Reference Guide(UG1037). 15.6.2017.
[6] Coussy, P. and Gajski, D. D. and Meredith, M. and Takach, A., An

Introduction to High-Level Synthesis. 2009.
[7] Andre Dehon, Fundamental Underpinnings of Reconfigurable Computing

Architectures. 3.3.15.
[8] kokke, https://github.com/kokke/tiny-AES128-C. 2017.

