

PCIe Range Extension via Robust, Long Reach Protocol Tunnels

Jim Peek Director of Technology Missing Link Electronics

Copyright © 2018 PCI-SIG® - All Rights Reserved

<u>Presentation Disclaimer</u>: All opinions, judgments, recommendations, etc. that are presented herein are the opinions of the presenter of the material and do not necessarily reflect the opinions of the PCI-SIG[®].

Motivation

PCI Express over IP

Example: IP based from Host complex PCI to PCI end point devices

Introduction

PCIe to Ethernet Bandwidth Matching

PCI Express

- PCIe replaces the PCI Local Bus (backwards compatible)
- Full-duplex serial transmission
- At 8GT/s line rate (Gen3) on up to 32 lanes
- Packet-based protocol with four layers

Application	Transaction Layer Packet (TLP)									
Transaction										
Data Link	Start	Seq.	Header	Payload	ECRC	LCRC				
Physical	4 B	2 B	12/16 B	128/256 B	4 B	4 B				

PCIe Layer

- Data Link layer, physical layer: Reliable transport on the link
- Transaction layer:
 - Transport of application data, device configuration, interrupts, Quality of service
 - TLP categories: Memory, I/O, configuration, message

Motivation

Motivation

PCI Express Topology

 PCIe is point-to-point. Hierarchical system topologies via switches

- ID based routing (bus/device/function number) and address based routing
- Transactions may require completion (posted or splittransaction)
- Range problem: Physical line length of PCIe on PCBs is limited to centimeter range

PCI

PCI Express Topology

 PCIe is point-to-point. Hierarchical system topologies via switches

- ID based routing (bus/device/function number) and address based routing
- Transactions may require completion (posted or splittransaction)
- Range problem: Physical line length of PCIe on PCBs is limited to centimeter range

PCI

State-of-the-Art

PCIe external cabling

Standard for copper cables

• FireFly PCle over Fibre

• PCIe 3.0 x 4 over fibre by Samtec

o ExpEther

PCIe 2.0 over 40 GigE networks by NEC

Source: NEC Corporation

Alternatives

Proposal: PCIe over TCP/IP

• Fully transparent to network equipment

- Just a bunch of TCP sessions
- No special traffic handling required

Fully transparent to PCIe

- Reliable transport via TCP
- Congestion control via TCP

Based on separated and distributed upstream and downstream switch ports

- Easily scalable via TCP session count
- Support for multiple ethernet ports
- Decouples cable routing from transaction layer routing

Independent of lower network layers, e.g. physical layer

Network Processing

 10 GigE will soon push from data center into embedded markets

Transporting 1 bit per second needs 1 Hz

- 1 GigE → 1 CPU at 1 GHz
- 10 GigE → 4 CPUs at 2.5 GHz

Network Processing

	Intel i7-4770	Xilinx Zynq 7045
Compute	~100 GFLOPS	5 GFLOPS (PS) 778 GFLOPS (PL)
TDP	84 W	<20 W (typ)

SOC FPGA has 4x more compute With ¼ the power dissipation!

[http://www.xilinx.com/products/technology/dsp.html]

PCI

Network Protocol Acceleration Platform Architecture

PCI

PCIe Layer

PCI

Why tunnel TLPs and not DLLPs? PCIe Timeouts

PCI

Why tunnel TLPs and not DLLPs? Scaling to Multiple Ports

PCI

Concept of PCIe over TCP/IP

---- Distributed PCIe Switch

PCI

TLP Aggregation

00000000	02	00	00	00	00	11	02	00	00	00	00	55	08	00	45	30
00000010	05	c8	9a	fa	40	00	ff	06	56	e6	c 0	a8	01	69	c0	a8
00000020	01	65	ca	05	ca	06	fc	5a	b4	d2	b5	45	28	44	50	18
00000030	01	e0	d3	79	00	00	60	00	00	40	03	00	00	ff	00	00
00000040	00	02	11	с7	4a	00	4b	05	c1	18	50	32	37	45	a9	a0
00000050	72	80	e9	d9	cb	1d	15	d4	b9	df	03	bb	23	05	82	ba
<>																
00000130	67	07	92	e3	c1	10	b7	7b	0d	52	be	38	c8	1c	76	2f
00000140	66	0c	11	de	7a	07	00	00	00	00	00	00	00	00	00	00
00000150	00	00	00	00	00	00	60	00	00	40	03	00	00	ff	00	00
00000160	00	02	11	c7	4b	00	ee	c5	d1	09	8f	d5	a0	18	bd	38
00000170	43	fe	с8	95	4e	1e	17	e7	69	83	97	53	d0	1a	e2	bc
<>																
00000250	2d	05	34	2c	53	11	09	af	80	c4	ef	62	96	0b	e1	95
00000260	0b	a1	1d	ea	f9	0a	00	00	00	00	00	00	00	00	00	00
00000270	00	00	00	00	00	00	60	00	00	40	03	00	00	ff	00	00
00000280	00	02	11	c7	4c	00	c0	4c	91	a1	94	95	06	6c	98	29
00000290	d2	ed	e9	81	f6	0b	33	45	ee	28	54	d9	b1	1d	a6	48
<>																
00000370	42	21	a5	50	70	00	36	47	4d	87	73	79	35	16	e6	a8
00000380	4e	cd	87	eb	06	03	00	00	00	00	00	00	00	00	00	00
00000390	00	00	00	00	00	00	60	00	00	40	03	00	00	ff	00	00
000003a0	00	02	11	с7	4d	00	1c	d5	36	a5	c9	f6	66	07	a3	da
000003b0	18	ca	3d	0c	4c	02	54	9b	f1	4b	7b	9c	df	07	6a	33
<>																
00000490	c2	60	fc	7e	71	15	e6	4e	7d	50	7e	ff	29	10	dc	a9
000004a0	<mark>9c</mark>	22	b1	17	10	09	00	00	00	00	00	00	00	00	00	00
000004b0	00	00	00	00	00	00	60	00	00	40	03	00	00	ff	00	00
000004c0	00	02	11	с7	4e	00	a6	9c	59	4e	c3	d3	45	4c	94	33
000004d0	78	9b	4b	13	b1	16	72	06	a5	59	ad	54	Зc	0d	ce	a0
<>																
000005b0	25	09	84	6a	3f	17	02	a2	1b	f9	bd	e8	a3	01	40	74
000005c0	22	ee	89	80	63	01	00	00	00	00	00	00	00	00	00	00
000005d0	00	00	00	00	00	00										

Ethernet II Header
[0000-0005] Dst. MAC: (02 00 00 00 00 11) → 02:00:00:00:00:11
[0006-0011] Src. MAC: (02 00 00 00 00 55) → 02:00:00:00:55
Internet Protocol Header
$[0017] \qquad Protocol: (06) \rightarrow TCP$
[001a-001d] Src. IP: (c0 a8 01 69) → 192.168.1.105
[001e-0021] Dst. IP: (c0 a8 01 65) → 192.168.1.101
Transmission Control Protocol Header
[0022-0023] Src. Port: (ca 05) → 51717
[0024-0025] Dst. Port: (ca 06) → 51718
PCIe TLP Header
[0036] FMT/Type: (60) → 64-bit Memory Write Request
[0038-0039] Length: (00 40) → 64 Doublewords (32-bit) → 256 Byte
[003a-003b] Requester ID: (03 00) → 03:0.0
[003e-0045] Address1: (00 00 00 02 11 c7 4a 00)
[015e-0165] Address2: (00 00 00 02 11 c7 4b 00)
[027e-0285] Address3: (00 00 00 02 11 c7 4c 00)
[039e-03a5] Address4: (00 00 00 02 11 c7 4d 00)
[04be-04c5] Address4: (00 00 00 02 11 c7 4e 00)
Data
Padding

- Send multiple TLPs per TCP/IP segment ٠
- Aggregating TLPs has minor impact on latency ٠
 - TLP aggregation reduces protocol overhead
- Up to 20 % bandwidth gain with aggregation

Implementation: FPGA Design

- Based on "XPressRICH3" PCIe IP Core from PLDA
- Based on Fraunhofer HHI NPAP

PCI

Implementation: Test Setup

PCI

NVMe Performance Results

Distributed PCIe Switch with TLP Aggregation

Local Remote 10GbE NVMe SSD CPU (intel) (intel) Xeon* E7 ZC706 ZC706 PCle PCle RC **UP** Port **DN Port** ΕP UP Port DN Port

Using PCIe over TCP/IP also opens PCIe for simple (performance) monitoring via network traces

10GbE

Visibility for monitoring

Copyright © 2018 PCI-SIG[®] - All Rights Reserved

10Gh

Visibility for monitoring

- A row is a request cycle of a device DMA engine
 - **Request leaves PCIe device flowing** upstream, enters DN node, then UP, then SPY, then host node
 - Completions flow downstream ٠
 - Multiple completions per request
 - Max read requrest size > max payload size
- All TLPs of a transaction are captured, timestamped and correlated
- SPY-SPY (red part) is the time a host needs to complete a request (PCIe to DRAM to PCIe latency)
- DN-UP, UP-DN are network transitions in upstream or downstream direction respectively
- Network bandwidth is lower than PCIe bandwidth, so this hop needs more time
- Observation: PCIe DMA engine requests bursts

26

Conclusions

- Reliable "tunneling" of PCI Express via TCP/IP
- Fully transparent to PCIe Root Complex and PCIe Devices
- No additional host software for compliant hosts ist needed as PCIe switch management is natively implemented
- The solution inter operates with all compliant software and add-in cards out of the box
- Scalability based on FPGA processing for bandwidths of 1, 10, 25 GigE line rates and beyond
- Re-use existing network infrastructure
- Technology extendable with NTB and MRA concepts in a distributed system

Thank you for attending the PCI-SIG Developers Conference 2018.

For more information please go to www.pcisig.com