Zone-Based Automotive Backbones Tunneling PCle[®]

Dr. Endric Schubert Chief Technology Officer Missing Link Electronics, Inc.

PCI-SIG Virtual Developers Conference 2021

Copyright © 2021 PCI-SIG. All Rights Reserved.

Members Implementation Session

SIG

PCI

Disclaimer

PC

PCI SIG

Acknowledgements

- Ulrich Langenbach
 Dir. Eng. Missing Link Electronics GmbH (MLE)
- Marcus Pietzsch Group Mgr, Fraunhofer Institute for Photonic Microsystems (IPMS), Dresden, Germany

Presentation Outline

WHY?

 More safe and eco-friendly vehicles drive automotive connectivity towards so-called Zone-Based Architectures. Inside those Zone Gateways PCIe[®] connects multiple SoC for scalable performance. Zone Gateways connect with each other via the emerging IEEE standards "Time Sensitive Networking" (TSN).

WHAT?

• A solution that fulfills the need for "tunneling" PCIe over TSN (working title PCIe-over-TSN), supporting CPU-to-CPU communication (PCIe NTB) and NVMe storage.

HOW?

 A digital circuit & system stack to encapsulate and to decapsulate PCIe TLPs (along with other protocols) over real-time automotive TSN 10G/25G Ethernet

PC

Automotive Network History (1967)

Evolution of Automotive Networks

Today's Expensive Wiring Nightmare

Copyright © 2021 PCI-SIG. All Rights Reserved.

Automotive Networks Today (Domain-Based)

Organized in Functional Domains

- Powertrain, Body Control, Comfort, Infotainment, etc
- Bus Gateways for Cross-Domain Communication

100 ECUs, or more via many different busses and protocols

Next: Zone-Based Architectures

- Network connectivity is not based on functional domains, but on physical location and proximity inside the vehicle, i.e. "Zones"
- Data aggregation and preprocessing in Zone Controllers:
- High-bandwidth connectivity towards a central "High Performance Computer" HPC

Application Example: "Smart Corner"

- Smart Corner: integrates all data sources and sinks located at one corner of a vehicle
- Smart Corner Node contains e.g.:
 - 2 Lidars
 - 2 Radars
 - 2 Cameras
 - 2 Ultrasonics
 - 1 Lighting Unit

Traffic Type	Characteristics
Scheduled Traffic	High-priority real-time traffic transmitted according to a time schedule (time-driven), no interference from other traffic
Stream Reservation	Periodic, guaranteed
Event- driven Traffic	Aperiodic bursts, generated by sporadic events, with real-time constraints
Best-effort Traffic	No guarantees; statistical performance

Zone-Based Automotive Network Needs to Transport PCIe

Driven by Cost/Performance, i.e. Centralized Compute & Storage:

- PCIe (for Embedded CPUs, GPUs, FPGAs and SoCs)
- NVMe (for SSDs)

Driven by Compliance

- FuSa ISO 26262
- Security ISO/SAE 21434
- SOTIF ISO 21448

• etc

PCIe-over-TSN is Based on Open Standards

PCIe from PCI-SIG, TSN from IEEE

Symmetric for CPU-to-CPU (e.g. PCIe NTB) or Asymmetric Sensor-to-CPU

PCIe-over-TSN System Stack Example

System Stack is

- Hardware (Digital Circuit)
- Software (Drivers)

3rd Party (IP Cores)

- Fraunhofer IPMS
- Fraunhofer HHI
- MLE
- Open Source

PCIe-over-TSN System Stack Implemented

Labcar Setup w/ PCIe Connect to HPC

Labcar Setup for Experiments

PCIe/NVMe

PCIE NTB

PCIe = 8GT/s x4 TSN = 1GE and 10GE

Backgrounder TSN

TSN is Time Sensitive Networking which is a collection of IEEE Standards for (Layer 2) Ethernet to deliver reliability and bounded latency

PCI

IEEE 802.1AS Precision Timestamping

Concept of Time Synchronization

Outcome measured with Oscilloscope is ~22 nanoseconds in FPGA (better in ASIC)

PCIe-over-TSN = "Distributed PCIe Switch"

PCIe Hierarchy with PCIe Switches

PCIe Long Range Tunnel "cuts open" PCIe Switch

PCIe-over-TSN Concept

Encapsulate and Decapsulate PCIe TLPs. PCIe demands reliability, therefore we transport TLPs over TCP/IP over TSN over Ethernet.

PCIe Layer

PCI

PCIe-over-TSN Smart TLP Aggregation

Aggregate multiple TLPs to optimize bandwidth dominated communication

Do not aggregate (i.e. send immediately) for latency oriented communication

Obey PCIe ordering rules by handling TLPs "as a stream"

00000000	82	00	80	09	00	11	02	90	80	00	80	55	08	-00	45	30
00000010	05	68	9.0	10	40	00	11	86	56	-	CO	28	01	69	CD	68
0606620	01	65	ca	05	ca	-86	te	5a	24	d2	85	45	28	44	50	18
06000030	01	eū	d3	79	00	-00	60	00	00	40	93	88	00	ff	09	00
00000040	00	02	11	c7	44	00	45	85	c1	18	50	32	37	45	a9	40
0000050	72	80	-89	09	cb	14	15	04	b9	df	03	bb	23	05	82	b ₀
c>																
06060130	67	07	92	ell	12	10	b7	75	Bd	52	be	38	CB	10	76	21
00000140	66	0c	11	de	74	87	00	00	00	00	-00	00	00	00	00	-80
00000150	00	00	00	00	00	00	60	00	80	40	03	00	00	11	00	00
00000160	90	02	11	\$7	4b	00	ee	:5	d1	09	Bf	05		18	bd	38
00000170	43	fe	68	95	44	14	17	#7	69	113	97	53	dD	1.8	e2	bc
<,,,≥														-		
0000250	24	05	34	Zc	53	11	09	af	- 80	64	ef.	62	96	借む	.01	05
0000260	0b	a1	1d		19	-	00	00	00	00	00	00	-00	00	00	00
00000270	00	00	00	00	00	-00	60	00	00	40	03	00	00	11	00	00
00000280	00	02	11	c7	4¢	00	C®.	40	91	-81	94	95	00	0C	98	29
00000290	42	ed	e9	81	16	60	33	45	-	28	54	d9	b1	1d	añ	48
¢>																
00006370	42	21	-85	50	70	00	36	47	40	87	73	79	35	16	60	38
08600380	40	cd	87	eb	06	83	09	-80	80	.08	80	69	00	.60	00	-80
00000390	90	00	00	00	00	00	68	80	00	40	93	00	.00	ff	00	90
06E00000	00	02	11	c7	4d	80	10	65	36	85	69	16	66	07	a3	da
000003b0	18	ca	3d	0c	40	82	54	9b	11	40	70	90	df	07	6a	33
c>																
00000490	c2	60	fc	7e	71	15	e6	48	-7d	58	7e	ff	29	10	dc	49
06400000	9c	22	D1	17	10	- 99	09	80	00	00	00	00	00	00	00	00
00000460	00	00	60	00	00	80	60	00	00	48	83	66	80	11	08	-80
000004c0	60	02	11	c7	4e	88	46	90	59	4e	c3	d3	45	4c	94	33
000004d0	78	95	4b	13	- 11	16	72	26	- 85	59	ad	54	Зc	Oct.	ce	80
£.,.>																
00000560	25	68	84	6a	3f	17	82	aZ	10	19	bd	08	a3	81	48	74
000005c0	22	ee	89	80	63	01	99	90	00	-00	90	66	90	66	00	00
000005d0	80	00	00	00	.00	.00										

Legende:

1	Ethernet II Header
	[0000-0005] Dst. MAC: (02 08 08 08 08 11) → 02:00:00:00:01:11
	[0006-0011] Src. MAC: (02 00 00 00 00 55) → 02:00:00:00:00:55
	Internet Protocol Header
	[0017] Protocol: (06) - TCP
	[001a-001d] Src. IP: (c0 a8 01 69) - 192.168.1.105
	[00]e-00211 Dst. IP: (c0 a8 01 65) - 192.168.1.101
	Transmission Control Protocol Header
	[0022-00231 Sec. Port: (ca 05) → 51717
	(0024,0025) Det Port: (ca 06) - 51218
	Pra Tip Heider
•	(0056) ENT/Turner (68) - 54 bit Manner Write Depuert
	[0030] PHI/Type: (007 + 04-04 Henry Write request
	[0038-0039] Cength: (00 40) = 04 Doublewords (32-011) = 250 Byt
	[003a-0030] Hequester ID: (03-001 = 03:0.0
	[003e-0045] Address1: (00 00 00 02 11 (7 4a 00)
	[015e-0165] Address2: (00 00 00 02 11 c7 4b 00)
	[027e-0285] Address3: (00 00 00 02 11 c7 4c 00)
	[039e-03a5] Address4: (00 00 00 02 11 c7 4d 00)
	[04be-04c5] Address4: (00 00 00 02 11 c7 4e 00)
	Data
	Padding

PCIe-over-TSN Results with NVMe SSD

Linux Ispci

00:00.0 Host bridge [0600]: Advanced Micro Devices, Inc. [AMD] Device [1022:15d0] 00:01.0 Host bridge [0600]: Advanced Micro Devices, Inc. [AMD] Device [1022:1452]

Kernel driver in use: nvme

Kernel modules: nvme

PCIe-over-TSN Robustness

Robust transport, even if TSN "throttles" bandwidth – test results for 1GE

Copyright © 2021 PCI-SIG. All Rights Reserved.

Members Implementation Session

PCI

PCIe-over-TSN Latency Analysis

Compare PCIe Latency for a directly connected SSD against the "tunneled" Use LeCroy PCIe Protocol Analyzer for PCIe Configuration TLP

PCle-over-TSN Latency – Results for 1 GigE

Direct-attached SSD: Baseline one PCIe Config TLP is 646,737,325 - 646,737,045 = 280 ns

0006	. 646 737 045 000 s	200.000 ns	Pkt 4	R→	5.0/x4	TLP: 303	CfgRd0
0006	. 646 737 245 000 s	76.000 ns	Pkt 5	R←	5.0 / x4	DLLP	ACK
0006	. 646 737 325 000 s	180.000 ns	Pkt 6	R+-	5.0 / x4	TLP: 3718	CpID

PCIe-over-TSN: Round-trip time for one PCIe Config TLP is 079,497,529 - 079,490,441 = 7,088 ns

0006 . 079 490 441 000 s	248.000 ns	Pkt4	R→ 5	0/×4	TLP: 4056	CfgRd1
0006 . 079 490 689 000 s	6.836 us	Pkt 5	R+ 5	0/x4	DLLP	ACK
0006 . 079 497 529 000 s	160.000 ns	Pkt 6	R+ 5	0/x4	TLP: 1452	CpID

⇒ T_tunnel = (7,088 - 280) / 2 = 3,404 ns

10 Gig Ethernet likely shortens this to < 3,000 ns

Members Implementation Session

PCI

PCle-over-TSN for Non-Transparent Bridging (NTB)

> lspci -vt

PCIe-over-TSN "Labcar"

Conclusion

- In-vehicle connectivity is quickly evolving, driven by cost/performance and compliance
 - Migration towards centralized so-called Zone-Based Architectures
- PCIe key choice for short-distance local connect between CPUs, GPUs, FPGAs, SoCs
- Our working proof-of-concept underlines feasibility
 - A layered stack of open-standard protocols extends reach of PCIe over real-time Ethernet / Automotive Ethernet – working title PCIe-over-TSN
- Implementation as a digital circuit delivers robust behavior at deterministic, low latencies

PC

Thank you for attending the PCI-SIG Virtual Developers Conference 2021!

For more information about PCIe technology, please go to <u>www.pcisig.com</u>