A 10 Gigabit Ethernet TCP/IP Stack Implementation on MicroChip PolarFire for High-Speed Camera Image Transport

> Missing Link Electronics Ulrich Langenbach, Andreas Schuler

MLE - Experts for Domain-Specific Compute Architectures

Our Mission is

- to support customer projects with deep expertise and hands-on design services
- Offering pre-validate FPGA subsystems of FPGA IP blocks and open-source software
- Applying novel FPGA design methodologies for increased productivity

Headquartered in Silicon Valley with Design Offices in Germany

- Founded 2010, employee owned
- 17+ Certified FPGA Designers
- 50+ Presentations at Technology Conferences, 5 Patents awarded

Our Design Services Expertise

- RTL and High-Level Synthesis using Intel or Xilinx Toolflows
- Zynq-7000 SoC in designs since Q1/2012
- Zynq Ultrascale+ MPSoC in designs since Q4/2015
- Zynq UltraScale+ RFSoC in designs since Q2/2018
- Arria-10, Cyclone V SoC PCIe subsystems
- PetaLinux / Vanilla Linux and Yocto-based SW development
- Multigigabit transceiver configurations
 - o PCIe Gen2/3/4/5, SATA 3/6G, SAS 6/12G, NVMe,
 - CAPI, JESD204B, DP/HDMI, MIPI CSI-2 D-PHY
 - 10/25/4050/100G Ethernet, Low Latency Ethernet
- Radar & Lidar for civil, mil/aero, automotive, industrial
- Image processing for HDMI, Displayport, SDI
- Time Sensitive Networking, Detnet, Layer-2 Switching
- Functional Safety Design Flows ISO 26262 (ASIL), IEC 61508 (SIL)
- Security & Trust (PUF, Crypto, OP-TEE)

Agenda

- Application Camera Image Transportation
 => Why TCP/IP?
- 2) Microchip Polarfire Overview
- 3) Protocol Overview
- 4) TCP/IP
 - a) Why TCP/IP?
 - b) How TCP/IP Works
- 5) NPAP
 - a) Overview Stack
 - b) Overview ERD
 - c) Latency
- 6) NPAP Applications

Camera Image Transport

Cameras getting more demanding in regards of Bandwidth

Preprocessing is not always possible - raw data is required

Long distance between camera and server/operator

Zone-Based 10 GigE Automotive Backbone

MicroChip - PolarFire

PolarFire - What's inside?

Why Polarfire?

Non-volatile FPGA fabric

Low Power

- Low device static power
- Low inrush current
- Low power transceivers

Reliability Features

- Configuration cells single event upset (SEU) immune
- Security Features
 - Differential Power Analysis protection
 - Physical Unclonable Function
 - Secure Non-volatile Memory

Overview

Features	MPF050T	MPF100T	MPF200T	MPF300T	MPF500T
K Logic elements (4 LUT + DFF)	48	109	192	300	481
Math blocks (18 x 18 MACC)	150	336	588	924	1480
LSRAM blocks (20 kbit)	160	352	616	952	1520
µSRAM blocks (64 x 12)	450	1008	1764	2772	4440
Total RAM (Mbits)	3.6	7.6	13.3	20.6	33
µPROM (Kbits)	216	297	297	459	513
User DLLs/PLLs	8	8	8	8	8
250 Mbps to 12.5 Gbps SERDES lanes	4	8	16	16	24
PCIe Gen2 endpoints/root ports	2	2	2	2	2
Total user I/Os	176	284	368	512	584

High-Speed Transceivers

10 GbE SFI 1 GbE SFI

https://www.microsemi.com/blog/2018/04/10/polarfire-fpga-transceivers/

Market Development of Image Transport Techn.

https://www.get-cameras.com/How-to-select-a-machine-vision-camera-interface-USB3-GigE-5GigE-10GigE-Vision

Protocol Overview

Protocol Overview - Wide Area > 50 m

TCP/IP

Protocol Overview - Interoperable with IT Equ.

TCP/IP

2022-07-07

15

Protocol Overview - Interoperable with IT Equ.

We do TCP/IP

Why TCP/IP with cameras?

Mature Protocol - it is around for more than 40 years

De facto standard of the Internet

Guaranteed delivery, back pressure capability -> it's a big, distributed FIFO!

Widely available commercial off-the-shelf (cots) hardware

Options to add features through additional Layers, on top or below:

- Time Sensitive Network (TSN)
- Media Access Control Security (MACsec)
- Transport Layer Security (TLS)

TCP Facts

Layered architecture

• "Packet"-based with data segmented

into Protocol Data Units (PDU)

- TCP message PDU at TCP layer
- Datagram PDU at IP layer
- Frame PDU at link-layer
- Communication is
- Reliable
- Ordered
- Error-checked

TCP/IP Header

TCP/IP Packet

Version	IHL	Type of Service	Total Length					
	Identification			Fragment Offset				
Time	e to Live	Protocol=6 (TCP)		Header Checksum				
	Source Address							
Pau	Destination Address							
-		Options		Padding				
	Source Port			Destination Port				
	Sequence Number							
	AcknowledgementNumber							
Data Offset		U A P R S F R C S S Y I G K H T N N	Window					
	Checksum			Urgent Pointer				
		TCP Options		Padding				
	TCP Data							

mle

2022-07-07

apart provide provide a second second

TCP/IP Header Options

Various web application driven additions available, e.g. via TCP Options, such as *session cookies* reducing the number of 3 way handshakes required to load a single web page

missing link electronic

I	Version	IHL	Type of Service	Total Length					
I	Identification			Flags	Fragment Offset				
I	Time	to Live	Protocol=6 (TCP)		Header Checksum				
		Source Address							
		Destination Address							
ſ			Options		Padding				
	Source Port			Destination Port					
	Sequence Number								
ſ	AcknowledgementNumber								
Ī	Data Offset		UAPRSF RCSSYI GKHTNN		Window				
I	Checksum			Urgent Pointer					
ľ	TCP Options				Padding				
Ī	TCP Data								

How TCP works - The Handshake(s)

https://www.freepik.com/vectors/corona-virus-cartoon created by brgfx - www.freepik.com

The 3 Way Handshake (establish connection)

https://afteracademy.com/blog/what-is-a-tcp-3-way-handshake-process

The 3 Way Handshake (teardown connection)

nups.nanciacauemy.com/blog/what-is-a-tcp-3-way-handshake-process

The 3 Way Handshakes

- 1. Make sure both sides are on the same page
- Enable both sides to detect if something got wrong (a packet was lost)
- 3. Respective flags are handled as if they were a Byte of payload
- => This actually provides integrity and consistency

Dataflow processing fits best to the power, compute and space requirements!

Network Protocol Acceleration Platform

NPAP - Network Protocol Acceleration Platform

What is NPAP?

NPAP is a TCP/UDP/IP Full accelerator and is operated processor independent

Key features:

- IPv4 with ICMP and IGMP
- TCP/UDP with AXI-S interfaces
- DHCP client
- Different speeds available (10/25/40/50/100 GE)
- Jumbo frame support
- Low latency and deterministic
- Configurable buffers for each session and direction

NPAP - Why Platform and not IP

It is delivered as an Evaluation Reference Design (ERD) and consists of:

- MAC (depending on speed/ FPGA technology eval required)
- TCP/UDP/IP full accelerator
- Control Flow
- Examples for handling
 - TCP Sessions
 - UDP
 - Stack control
- Netperf
 - Open Source Network Bandwidth Measurement tool

NPAP - Evaluation Reference Design (ERD)

NPAP Control Application

- AXI4-Lite Interface
- NPAP Control (IP, MAC, ...)
- DHCP Control and Status
- NPAP Reset
- One IP instance per NPAP instance

TCP Command Application

- AXI4-Lite Interface
- Example TCP Command Interface implementation
- One IP instance per TCP session
- Controlled by TCP Demo Application or standalone usage

tcp_command_application_top_v1_0

TCP Demo Application

- AXI4-Lite Interface
- Data stream control (loopback, discard, external)
- TCP Session Reset
- One IP instance per TCP session
- Controls TCP Command Application

tcp demo application top v1 0

UDP Demo Application

- AXI4-Lite Interface
- Data stream control (loopback, discard, external)
- TUSER setting (per Datagram meta-data, e.g. source + destination ports)
- One IP instance per UDP port

Design Flows

- Vivado Block Diagram Flow
 - Based on IPXACT packages IP cores
 - Allows for quick design generation
- Classic RTL Based Flow
 - File inclusion into project
 - Library assignment for files
 - Traditional Verilog or VHDL module instantiations
- Tool specific IP integration Flow(s)
 - Usually TCL script based
 - Adds sources and may provide interface bundles

NPAP - Performance & Metrics

NPAP - Performance & Metrics

Round Trip Time and Throughput

Symbol	Parameter	Condition	Value	Units
RTT _{avg}	Average round-trip time	BL= 1 BL=10 BL=100 BL=1k	10,10 14,20 24,54 26,75	μs μs μs μs
TPR _{avg}	Average network throughput	BL = 1 BL = 10 BL = 100 BL = 1k	4,17 7,21 8,97 9,23	Gbps Gbps Gbps Gbps
BDP _{avg}	Average bandwidth-del ay product	BL = 1 BL = 10 BL = 100 BL = 1k	44 101 255 246	kbit kbit kbit kbit

¹ Burst length BL=1 (=8 kByte)

² Measurement setup = HHI Stack-to-HHI Stack

³ The values are valid for XILINX Virtex 5XC5VFX130T, speed grade - 2 FPGA. The reference test hardware is the HHI 10G EthEval board.

NPAP - Performance & Metrics

The Bandwidth-Delay-Product

- Is a metric for network system performance
- Provides an estimate for buffer sizing
- => Let's have a closer look!

ахр	network throughput	BL = 10 BL = 100 BL = 1k	7,21 8,97 9,23	Gbps Gbps Gbps
BDP _{avg}	Average bandwidth-del ay product	BL = 1 BL = 10 BL = 100 BL = 1k	44 101 255 246	kbit kbit kbit kbit

¹ Burst length BL=1 (=8 kByte)

² Measurement setup = HHI Stack-to-HHI Stack

³ The values are valid for XILINX Virtex 5XC5VFX130T, speed grade - 2 FPGA. The reference test hardware is the HHI 10G EthEval board.

Bandwidth

Delay a.k.a. RTT

RTT = 2 * Latency (for symmetric systems)

RTT = t1 - t0 [s]

Bandwidth-Delay-Product - Low Bandwidth

Bandwidth-Delay-Product - High Bandwidth

(Equally sized packets = 1 unit)

More data in flight during the RTT -> larger buffer required to cover for potentially missed packets (re-transmission buffer)

NPAP on PolarFire

Resource Utilisation

The following table shows resources synthesized for MicroSemi PolarFire MPF300TS-1FCG1152I using Libero 2021.1 - instantiating the following design features:

- Ethernet
- IPv4
- UDP
- 3 instances of TCP

	Fabric	Fabric	Interface	Interface	USRAM	I LSRAM	Math	Chip
Instance	4LUT	DFF	4LUT	DFF	1K	18K	18x18	Global
npap_tcp_udp_wrapper_u0	60339	31116	6792	6792	122	146	2	12
npap_tcp_udp_top_u0	60339	31116	6792	6792	122	146	2	12
Primitives	13	1	0	0	0	0	0	0
interface_adapter (all)	57	1	0	0	0	0	0	0
wrapper_ll_ip_tcp_u0	60269	31115	6792	6792	122	146	2	12
Primitives	349	195	0	0	0	0	0	0
i_netLayerConv	249	206	0	0	0	0	0	0
i_tcpTxMux	123	2	0	0	0	0	0	0
gen_WithUdp.i_udp	5598	3997	1548	0	24	35	0	0
gen_tcpConnections[0].i	15560	7037	1740	1740	31	37	0	3
<pre>gen_tcpConnections[1].i</pre>	13287	6649	1068	1068	26	19	2	3
<pre>gen_tcpConnections[2].i</pre>	15707	7112	1752	1752	35	37	0	3
iBusScheduler8	106	34	0	I 0	0	0	0	0
i_internetLayer	3717	2995	216	216	6	4	0	1
i_networkLayer	5306	2665	504	504	0	14	0	0

Challenges migrating to Microchip Polarfire FPGAs

FPGAs of other vendors

- Registers are initialised during FPGA SRAM cell initialisation (bitstream load) to a specific value
 - a. An initial value is chosen by the tool
 - b. An initial value is provided by the developer
- Power-on-Reset is nice-to-have, but a good design practice

Microchip Polarfire FPGA

- Registers cannot be initialised during SRAM cell initialisation (bitstream load)
- To provide a defined POR state a Power-on-Reset is a must on this platform!

Challenges migrating to Microchip Polarfire FPGAs

- RTL descriptions written for other vendors' devices / families must not necessarily perform similar on Microchip Polarfire devices
- Code must be carefully reviewed and re-written to implement
 - POR for all registers that define the circuit state,
 - including re-writing potentially present initial values into a POR

NPAP Applications

2022-07-07

46

Distributed PCIe NTB

- NTB: Non-transparent Bridge
- Prototypical implementation based on Xilinx ZU+ devices

Sensor Fusion and Data-in-Motion Processing for Autonomous Vehicles

> Endric Schubert, Ph. D. CTO Missing Link Electronics (MLE)

> > Copyright © 2019 PCI-SIG® - All Rights Reserved

PCIe Non-Transparent Bridge

- Non-Transparent Bridge (NTB) connects multiple Root Ports
- o Example of NTB Back-2-Back

(Example from Intel Xeon C5500)

NTB: Multi-CPU Interconnect via a Daisy-Chain

• Not optimal for Automotive ECU

- Shared Bandwidth
- Not resilient to HW failures
- Added Latency for ID translation

NTB: Multi-CPU Interconnect via a Daisy-Chain

Network-on-Chip for Any-2-Any Connectivity between PCIe Roots

PCIe Range Extension via TCP/IP

- Presented at PCI-SIG
 Developers Conference
 2018
- Results of a prototypical implementation based on Xilinx Z7000
- Since than a new generation of prototypes is available based on Xilinx ZU+ devices

PCIe Range Extension via Robust, Long Reach Protocol Tunnels

> Jim Peek Director of Technology Missing Link Electronics

> > Copyright © 2018 PCI-SIG® - All Rights Reserved

PCIe Transport via TCP/IP

- Fully transparent to network equipment
 - Just a bunch of TCP sessions
 - No special traffic handling required
- Fully transparent to PCIe
 - Reliable transport via TCP
 - Congestion control via TCP
- A "distributed" PCIe Switch
 - In accordance to PCIe Spec
 - Scalable via TCP session count
 - Supports latency requirements for "sideband" signals
 - Special care needed to avoid deadlocks
- Independent of lower network layers, e.g. physical layer
- Could be used as PCIe range extension

A Prototypical Implementation

- Adds visibility to the o Using PCIe over TCP/IP also opens PCIe for simple PCIe path (performance) monitoring via network traces
- Traditional Network tools now applicable to PCIe, e.g. Wireshark

Concept of PCIe-over-TCP (1)

- Network Protocol Stack
- Encapsulation of PCIe Transaction Layer Packets (TLPs) into TCP

Concept of PCIe-over-TCP (2)

Key-Value-Store Hardware-Acceleration

- Joint work of MLE and Xilinx Research Ireland
- Presented at SNIA SDC 2016 and SNIA SDC 2017
- Single-Chip Solution

Heterogeneous Multi-Processing for SW-Defined Multi-Tiered Storage

Architectures

Endric Schubert (MLE) Ulrich Langenbach (MLE) Michaela Blott (Xilinx Research)

SDC, 2017

Key-Value-Store Hardware-Acceleration

- Ethernet Attached KVS Storage Node
- Fully Pipelined
- Local NVMe memory
- Local DRAM memory
- Multi-hierarchy storage
 - Small and Fast
 - Large and "Slow"

NPAP

Key-Value-Store Hardware-Acceleration

P

• Data-Flow Processing enables real on-the-fly meta-data extraction

© MLE

XILINX > ALL PROGRAMMABLE.

FPGA-Based "Edge" - Server Connectivity

"Edge" FPGA w/ sensors for Data acquisition and pre-processing Linux Server w/ NVMe SSDs and Xilinx Alveo for data storage and processing

NPAC - Network Protocol Accelerator Card

NPAC - Features

First MLE NPAC PCIe card, namely NPAC-KETCH, will be available soon:

- Targeted to Intel Stratix 10 GX 400
- Netperf and TCP-/UDP-Loopback example instances
- 4x SFP+ for 4x 10 GigE via Twinax or Fibre
- Supports Quartus design flow with High-Level Synthesis design option
- Runs on MLE NPAC-40G Cost-Optimized SmartNIC

Other device vendors on the Roadmap: Microchip, Xilinx

Contact Information

Email contact: sales-web@missinglinkelectronics.com

Missing Link Electronics, Inc. +1 (408) 475-1490 2880 Zanker Road, Suite 203 San Jose, CA 95134 United States

Missing Link Electronics GmbH +49 (731) 141149-0 Industriestraße 10 89231 Neu-Ulm Germany

