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Abstract—5G addresses machine-type communication with low
energy demands. 5G Edge Clouds reduce processing latency by
bringing extra compute close to the “edge”. To be cost-efficient,
Edge Cloud systems are implemented following modern data
center technology, such as NVMe that uses PCIe. PCIe typically
is implemented for short-range up to 30cm. For composabil-
ity, there is so-called NVMe-over-Fabric, including Long-Range
PCIe, which “tunnels” PCIe over network via a distributed
switch. PCIe switches are defined in the PCIe specification.

5G URLLC starts with 3GPP Release 15 meets the require-
ments for implementing such Long-Range PCIe, enabling the
design of composable Edge Cloud Storage over 5G. This paper
demonstrates a proof-of-concept “NVMe-over-5G” implementa-
tion along with a methodology for detailed latency analysis.
We start with key aspects of 5G URLLC, PCIe, and Long-
Range PCIe, followed by introducing NVMe and composable
Data Center architectures. We then present our setup NVMe-
over-5G running on the experimental 5G system at Fraunhofer
and TU Berlin. We use COTS hardware comprising AMD/Xilinx
Ultrascale+ MPSoC and 5G modems to connect a standard
NVMe SSD with a standard CPU running Linux and the NVMe
protocol. We break down the overall latency and highlight how
much each intermediate component contributes to the total PCIe
NVMe end-to-end latency. Our findings show that in general
5G URLLC can meet the PCIe/NVMe requirements, as long as
certain optimizations are implemented to reduce tail latency.

Keywords—5G, URLLC, PCIe, NVMe, FPGA, edge cloud,
TCP/IP, latency

I. INTRODUCTION

5G goes further than its successors and addresses multiple
different use cases [1]:

• End-users require bandwidth for video streams
• Sensor networks require low-energy connectivity
• Industrial automation demands reliable and low-latency

transmissions

5G has the challenge of fulfilling these heterogeneous
requirements and aligning them in one common standard
and even simultaneously in the same cell without negatively
influencing each other. One of the key ideas of 5G is disag-

gregation, i.e. removing the need for specialized hardware [2].
With standardized interfaces, the network can be made of dif-
ferent components by different vendors with interchangeable
hardware and software. Each component can be containerized
and run on commodity servers. Thus, a network can be tailored
to specific needs and requirements, even live on demand.
Using commodity hardware also simplifies building “campus
networks” or a network connecting robots and sensors on
factory floors by using open standards and supporting interop-
erability. By splitting components, 5G User Equipment (UE)
can be reduced in size and weight, shifting the intelligence
“into the cloud”. Instead of, e.g. storing all necessary data
on the device itself, data can be stored centrally in the edge
cloud. Consider a swarm of drones, e.g. taking measurements
or recording data. Instead of having to carry data storage
equipment, the data can be streamed to the closely connected
edge cloud.

Peripheral Component Interconnect Express (PCIe) is a
commonly used, high-speed, point-to-point serial protocol
connecting CPUs with expansion cards for high-performance
access to storage, e.g. SSDs or accelerators, such as GPUs or
Field-Programmable Gate Arrays (FPGAs) [3]. Even though it
is mainly known for consumer PCs and professional servers,
it is becoming increasingly popular in the embedded world
because of its low latency, high throughput, and wide range of
support [4]. Each new PCIe generation approximately doubles
the available bandwidth, with PCIe Gen 4 providing almost
32GB/s on 16 lanes. Non-Volatile Memory Express (NVMe)
is an example of a modern, fast, PCIe-based communication
protocol. Contrary to a software-based, CPU-controlled im-
plementation, NVMe utilizes the PCIe protocol efficiently by
issuing multiple read and write requests in parallel. The device
reads and writes the data that is stored in several ring buffers
per CPU core.

Previous work concentrated on tunneling PCIe over TCP/IP
using an FPGA-based setup with multi-gigabit wired connec-
tions. A pair of FPGA nodes implement a PCIe switch accord-
ing to the PCIe specification, thus fully transparent to the PCIe
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Root Complex (RC) and PCIe device. TCP provides a reliable
transport mechanism with retransmissions in case of errors
and congestion control. The Transaction Layer Packets (TLPs)
get encapsulated in TCP/IP/Ethernet packets for transportation,
independent of the underlying physical medium. This so-called
“Long-Range PCIe” with its distributed PCIe switch enables
users to connect PCIe devices to CPUs over distances longer
than the usual 30 cm.

Ultra-Reliable Low-Latency Communication (URLLC) ad-
dresses one of the use cases defined by the 3GPP speci-
fication: The demand of reliable communication with low-
latency requirements [5]. 5G allows additional, larger subcar-
rier spacings, shortening the transmission time of a 5G slot
containing 14 Orthogonal Frequency-division Multiplexing
(OFDM) symbols. URLLC shortens the transmission even
further by introducing “mini-slots” which consist of only 2 – 4
symbols. Furthermore, URLLC can briefly interrupt ongoing
traffic to keep the low-latency guarantees.

We propose an experimental setup tunneling these encapsu-
lated TLPs over a 5G Release 15 network. According to the
specification, 5G should provide enough bandwidth to tunnel
simple NVMe requests, such as detecting an off-the-shelf
SSD and allowing basic read/write operations. In addition, we
analyze the end-to-end latency of such requests and evaluate
the performance of the whole setup. Due to Release 15 only
implementing the basic requirements of URLLC, we could
not utilize the low-latency properties of 5G [6]. Our measured
end-to-end PCIe latency is 16.1ms on average. Due to the
tail latency of TCP, we observed PCIe Completion Timeouts
(CTOs), especially during enumeration at boot. 99.12% of
the latency can be attributed to the 5G network. Thus, this
specific network cannot meet PCIe demands reliably. However,
this proof-of-concept setup can be used to test other networks
practically and, e.g. measure the improvement of upcoming
5G features, such as Release 16 and full URLLC support [7].

II. EXPERIMENTAL SETUP

Our experimental setup consists of the following parts: On
the network side, a standalone 5G Release 15 network, hosted
by Fraunhofer HHI as part of the 5G Berlin testbed using
a Nokia AirScale Remote Radio Head (RRH) and a Nokia
AirScale 5G Next-Generation Node B (gNB) Baseband Unit
(BBU). The BBU is connected to an ng4T 5G core. The
network operates at 3.6GHz and 100MHz bandwidth, with
a subcarrier spacing of 30 kHz.

On the user equipment side, we used two Quectel
RM500Q-GL modems. Each modem connects to a proFPGA
uno ZU19EG ASIC prototyping platform using USB3. The
modems are controlled by the Processing System (PS) running
Linux 5.10 with standard drivers. In the Processing Logic
(PL), the ZU19EG’s PCIe hard macro is either configured
as PCIe RC or Endpoint (EP). A commercial off-the-shelf
(COTS) mini ATX mainboard with a Ryzen 3200G CPU is
connected to the FPGA configured as PCIe EP (upstream). A
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Fig. 1: Distributed PCIe switch with two FPGAs and a PCIe
RC and EP
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Fig. 2: Block diagram of the Upstream FPGA with 5G
interface

COTS NVMe SSD is connected to the FPGA configured as
PCIe RC (downstream). Both FPGAs together make up the
distributed PCIe switch (Fig. 1).

For a request from the CPU/RC, the upstream PL encapsu-
lates the PCIe TLPs in TCP/IP/Ethernet packets and forwards
these to the PS. The PS forwards them to the USB modem
to be sent to the corresponding downstream modem over 5G,
where the TLPs are decapsulated again.

Our setup is based on previous work [8] by Braun et al. .
They encapsulated TLPs in TCP/IP/Ethernet packets and used
10Gbit/s QSFP+ cable for transmission. Additionally, they
added mechanisms to combine multiple TLPs in one Ethernet
packet to coalesce multiple requests. This improved perfor-
mance by reducing the number of TCP packets that must be
acknowledged.

The 5G modem only supports USB3 as an interface,
working out-of-the-box with Linux 5.10. Thus, we added
additional hardware to the PL, consisting of a Direct Memory
Access (DMA) engine, FIFOs for buffering, and Block RAM
(BRAM) to simulate Advanced eXtensible Interface (AXI)-
mapped registers as a PL/PS crossover interface to forward
Ethernet packets between the FPGA and Linux running on
the CPU side. On the software side, the Xilinx axienet driver
for the Ethernet subsystem creates a Linux network interface.
Together, the software side with the network interface and the
hardware side with its AXI-Stream interface can send Ethernet
frames between the PL and PS. We call this “fake ethernet”.

The Quectel RM500Q-GL is supported by the standard
qmi wwan driver shipped with Linux 5.10. The driver creates
a wwan network interface. We used the iptables framework
to forward data between the wwan-interface and the eth-
interface created by the axienet driver. Simpler, more resource-
efficient bridging was impossible because the wwan network
interface is a layer3 point-to-point interface. Thus we used
Source Network Address Translation (SNAT) and Destination
Network Address Translation (DNAT) to forward specific ports
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to the PL and rewrite outgoing packets with the appropriate IP
address. Fig. 2 shows a block diagram for the PCIe upstream
device.

As reference setup and for comparison to related work,
we used wired USB-GBit-Ethernet adapters for replacing the
modems. Thus, we create a setup that is also wirebound but
matches our 5G setup apart from the modems and the network
itself.

III. METHODOLOGY

Various tools and techniques were used to measure the la-
tency of all components in our setup. We defined the following
criteria for all measurements and describe each measurement
in detail afterward.

• An experiment runs over at least 5min (mostly 10 –
20min) while taking at least 10 000 individual values

• We also tested using different Ethernet packet sizes to
investigate the effect of packet size on latency:

– Hardware-based: 68B, 515B, 1027B, and 1518B
– Software-based: 64B, 128B, 256B, 512B, 1024B,

and 1518B

• Line rate limitation of 1Mbit/s in hardware and at least
10ms between each packet in software to avoid over-
whelming the network and thus introducing additional
latency

• Outlier filtering by removing values outside the 3σ inter-
val

A. PCIe, end-to-end, CPU to NVMe SSD

Our setup is transparent for the host CPU and the attached
NVMe SSD. The FPGAs implement a PCIe switch according
to the PCIe specification [3]. Thus the SSD can be used
by a standard OS running on the CPU without additional
modifications or drivers.

By repeatedly reading the 32 bit Base Address Register
(BAR) address 0, we could measure the SSD’s access latency
reliably. Our setup consisted of a driver for exposing the
access statistics to userspace and a ruby script for initiating
the measurement and exporting the access latency.

B. PL to PL, FPGA to FPGA

We replaced the PCIe traffic with randomly generated data
for measuring the FPGA-to-FPGA latency. We could measure
the latency accurately by using timestamps as “random data”
which were returned by the other, receiving, downstream
FPGA.

C. PS to PS, embedded OS

For the third end-to-end measurement, we used a C program
running in userspace to measure the latency of packets echoed
by the other FPGA utilizing gettimeofday(). Using

ICMP packets with ping yielded similar results. However, due
to the potentially different handling of ICMP packets vs. TCP
packets and to allow for accurate comparison with the PCIe
traffic, we chose to measure with generated TCP traffic.

D. Hardware latencies in PL

Our hardware setup consisted of three main components:
The PCIe hard macro, the TCP/IP/Ethernet stack with TLP
handling, such as encapsulation and decapsulation, and “fake
ethernet” for passing the generated Ethernet frames to the PS
side. By using the Xilinx Integrated Logic Analyzer (ILA),
we measured the latency of all components. Due to the same
magnitude of packet size influence and processing latency in
general, we calculated the latency as a range for the smallest
and largest packets possible.

E. PL/PS interface

While the PL-side of the “fake ethernet” interface mainly
contains only AXI-Stream FIFOs for the DMA, the PS-side,
i.e. the Xilinx axienet driver, controls what and when data
is sent or fetched. Due to the unpredictable nature of the
Linux scheduler, this latency varies slightly. We measured this
connection in twoways: Once with the userspace C program
configured as loopback, thus echoing all received packets back
to the sender, i.e. the PL. The second time, we configured the
PL as loopback with the software side measuring the latency.

F. Linux iptables

The Linux iptables framework was used for routing the
packets between the “fake ethernet” interface (eth0) to the
modem interface (wwan0) of the qmi wwan driver and vice
versa. Due to the modem only offering a level 3 interface,
we could not use a more resource-friendly bridge and had to
resort to iptables. This required additional overhead due to
IP address rewriting and re-calculating the checksums. We
measured the latency using libpcap and tcpdump’s kernel
timestamps. We recorded traffic being forwarded over both
interfaces and calculated the timestamps’ difference.

G. Linux USB network stack

Linux’ usbmon facility allows capturing USB packets simi-
larly to network packets using tcpdump. However, this method
cannot measure the time the modem needs to process and send
the packets. While USB technically has a SUBMIT and cor-
responding COMPLETE packet, measuring the time between
these did not provide any meaningful results. Additionally, it
is unclear on the modem’s side at which stage of processing
the COMPLETE packet is sent back to the host and if it is
dependent on the 5G network, including the delay of waiting
for the appropriate slot for up- or download due to Time-
Division Duplex (TDD) [9]. Thus, we could only measure
the kernel’s processing time of the qmi wwan driver. The
remainder of the latency was attributed to the general 5G
latency.
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Fig. 4: “The Map” for the PCIe end-to-end latency path using
the 5G network

H. Other latencies, e.g. PS to 5G Core

Using a simple ICMP ping and hping’s TCP “ping”, we
measured the latency to the 5G core, benchmark machines
within the 5G core network and the other board of the
distributed PCIe switch to establish a baseline of the expected
latency and to verify our measurements.

IV. RESULTS

First, we present the overall latency, measured from PCIe
RC to PCIe EP, then describe each intermediate component in
detail.

In Fig. 3 you can see the total end-to-end latency of a
request sent by the PCIe RC to the PCIe EP. The path is
broken up into sections how much each individual component
contributes to the total end-to-end latency. First, we can see
that the majority of latency (≈99.12%) is introduced by the
5G network, with the total latency being 16.161ms ms and
the 5G network taking 16.019ms alone. Some cases, e.g.,
“qmi wwan driver” and “5G TCP/IP latency”, overlap because
some measurements were only measurable or analyzable at
specific points. While we could measure how long the driver
needs to send a received Ethernet packet over USB, we could
not accurately measure the 5G latency “behind” the USB
interface.

Upstream
(µs)

Downstream
(µs)

NPAP 0.256 – 3.616 0.256 – 3.616
“fake ethernet” 0.816 – 2.320 0.816 – 2.320
PL → PS → PL * 22.5 – 28.1 22.5 – 28.1
PS → PL → PS * 27.1 – 33.0 27.1 – 33.0
Linux iptables 10.2 11.0
Linux USB Network Stack* 36.2 23.9

ICMP ping to 5G core* 11 700
ICMP ping to VM* 11 600
hping to VM* 14 100

(a) Individual component latencies

5G
(µs)

GbE
(µs)

PCIe* 16 161 186.3
PL to PL* 20 254 – 32 987 165.7 – 196.4
PS to PS* 14 998 – 22 597 156.0 – 212.6

(b) End-to-end latencies

TABLE I: Measured individual component latencies and end-
to-end latencies

Fig. 4 shows the whole setup, including the 5G network
architecture with its components. Shown is the end-to-end path
of the PCIe request. The upstream FPGA with the connected
PCIe RC is depicted at the top, the downstream FPGA with the
connected PCIe EP at the bottom. The results of each latency
measurement between all of the components as described in
Section III are depicted in Table I.

Fig. 5 shows a detailed analysis of the latency distribution of
PCIe over 5G, which makes up the mean value of 16.161ms
ms, shown as a dashed vertical line. We can also see that
the distribution roughly represents a Gaussian distribution.
3σ-filtering discarded 40 out of the 100 000 measured values
over 54min. The standard deviation equals 3230.04 µs which
is also visible as large dispersion of the data. Accessing the
ADATA XPG SX8000 128GB SSD using basic operations such
as creating test files that were written to or read from was
possible, albeit considerably slower. Due to the high latency
and the small TLP sizes, the theoretical 5G bandwidth of about
50 – 70Mbit/s could not be fully utilized and practically
maxed out at about 13Mbit/s when writing a large, randomly
generated 1GiB file.

Fig. 6 shows the latency distribution for dummy-traffic
instead of PCIe from PL to PL. The network path is shown
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tail latency

in Fig. 7. While the majority of packets have a latency of
on average 20.2ms one-way across all packet sizes, some
individual packets (less than 0.01%) have a tail latency of
more than 200ms one-way. This affects mostly packets of
smaller sizes, such as 68B.

Fig. 8 shows the same experiment, but with the EDI-
MAX EU-4306 USB Ethernet adapters replacing the Quectel
RM500Q-GL. It shows two almost distinct distributions, with
minimal, individual standard deviations. The distribution on
the right with a mode of 186.5 µs represents most values. The
mean latency is 186.30 µs, shown as a dashed lane. On the
left, the smaller distribution shows approximately 10% of the
values with latencies ≈5 µs smaller, probably due to caching or
frequency and scheduling changes. While the CPU accessing
the SSD and running the benchmarking tool was fixed to the
full 3.6GHz with the performance scheduler and disabled
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c-states, the CPUs of the PS running PetaLinux can also
influence the measurements because of interrupt scheduling
and caching.

Finally, we can summarize three main results:

1) Due to the high latency and the significant variance, the
setup does not boot using the 5G network and requires
a wired connection. While PCIe is technically able
to handle PCIe CTOs with Round-Trip Times (RTTs)
as high as 4 – 64 s in the highest range, the default
range of devices being 50 – 50 000 µs. With an average
latency of 16.161ms one-way and a standard deviation
of 3.596ms, we presume that it leads to timeouts with
the system being stuck in an unrecoverable PCIe state.
Our test with dummy-PCIe traffic has also shown a very
high tail latency.
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2) The 5G Release 15 network introduces the majority of
latency (>99%) in our setup compared to our reference
setup. The use of COTS hardware required additional
workarounds, i.e. “fake ethernet” and Linux iptables,
which are responsible for an additional 78 µs of latency.

3) Measuring the PCIe latency using the reference setup
results in a mean end-to-end latency of 186.30 µs. This
value, especially keeping the additional overhead of
138.1 µs for “fake ethernet”, Linux iptables, and the USB
stack in mind, is similar to Schubert’s measured latency
of 52.5 µs for a comparable NVMe SSD. This shows that
our reference setup is comparable to Schubert’s setup.

V. CONCLUSION

We extended an existing distributed PCIe switch using a
TCP/IP connection over 10Gbit/s-Ethernet with a 5G-based
“tunnel”. The usage of COTS components, such as a USB 5G
modem, required us to implement internal routing mechanisms
to transfer the Ethernet frames generated by the PL of the
FPGA to the USB 5G modem attached to the PS/CPU of the
System-on-Chip (SoC), using the standard Linux driver. We
analyzed the resulting PCIe end-to-end latency but also the
individual latencies of all components in between, making up
the end-to-end latency. Due to the high latency of the 5G net-
work with 16.161ms and the high variance, the BIOS cannot
enumerate the remotely attached PCIe device and presumably
encounters PCIe CTOs. Booting over a wired connection is
possible, and Linux can successfully re-enumerate the PCIe
tree when switched back to the 5G connection.

Our measurements have shown that the 5G network causes
>99% of the end-to-end latency. An additional ≈0.23% are
artificially introduced by being limited to COTS components
and having to implement workarounds to route generated
TCP/IP packets to the USB 5G modem.

In summary, our proof-of-concept setup is valid for latency
measurements. Our reference setup measures similar laten-
cies for a 1Gbit/s-Ethernet wired connection, comparable to
previous work by [8], which differs only in the use of USB
Ethernet adapters instead of USB 5G modems. We have shown
that it is possible to “tunnel” PCIe over 5G, although not
entirely reliable due to the TCP tail latency. While the latency
and bandwidth pose a significant bottleneck and potential deal
breaker due to PCIe CTOs, improvements such as URLLC
with the upcoming next releases of 5G should alleviate these
issues.
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