
MLE Technical Brief 20231031
Network Protocol Accelerator Platform
A stand-alone TCP/UDP/IP Stack Full-Accelerator Subsystem
allowing communication at full line rate and low latency

Version: 2.2.5
Date: October 2023
Authors: Ulrich Langenbach, Thomas Glatte, Endric Schubert

Features 1
Applications 2
IP Core Description 3

Technical Features 3
Implementation Details 5
Latency Analysis Results 7

Architecture Choices 8
Picking the “Right” TCP Peer 9
Picking the Right TCP Rx/Tx Buffer Sizes 10
Picking the Right Number of TCP Cores 10
Optimizing NPAP for Linerate Performance 11
Combining NPAP With FPGA Network Interface Cards (NIC) 11

Implementing Time-Sensitive Networking (TSN) 12
Linux Kernel Bypass With NPAP 13

Adding Transport Layer Security (TLS) 13
NPAP Evaluation Choices 14

Evaluation Reference Designs 14
Resource Estimates for ASIC and Other FPGA 16

Resource Estimates for AMD/Xilinx Ultrascale+ Series 16
Resource Estimates for AMD/Xilinx 7-Series 17
Resource Estimates for Intel Stratix-10 17
Resource Estimates for Microchip Polarfire 19

Detailed protocol support according RFC1122 (excerpt) 20
Ethernet Layer 20
IP & ICMP Layer 20
TCP Layer 22

Developer Documentation 24

Changelog 26
NPAP Version 2 Development 26
NPAP Version 1 Development 28

Contact Info 33

MLE TB20231031

Features

MLE’s Network Protocol Accelerator Platform (NPAP) for 1/2.5/5/10/25/40/50/100
Gigabit Ethernet is a TCP/UDP/IP network protocol Full-Accelerator subsystem which
instantiates the standalone 128 bit TCP/IP Stack technology from German Fraunhofer
Heinrich-Hertz-Institute (HHI). This Fraunhofer HHI 10 GbE TCP/IP Stack was designed
for embeddable FPGA and ASIC system solutions and offers the following features:

● Interface to 1 / 2.5 / 5 / 10 / 25 / 40 / 50 / 100 Gigabit Ethernet
● Full-duplex with 128 bit wide bidirectional datapath
● Full line rate up to 70 Gbps per NPAP instance
● Full line rate >100 Gbps per individual TCP session in ASIC
● Low round trip time NPAP-to-NPAP 700 nanoseconds for 100 Bytes RTT

Designed for maximum flexibility, NPAP implements in programmable logic the most
common network communication protocols:

IPv4 The core of the most standards-based networking protocols

TCP Reliable connectivity for direct secured connectivity

UDPWidespread protocol to enable simple direct or multicast communication

ICMP Diagnostic protocol to validate connections

IGMP Enables joining of multicast groups

Due to the modularity NPAP can easily be enhanced by application specific protocols.

Originally targeted to deliver close to the theoretical line-rate of 10 Gigabit Ethernet, a
128 bit wide datapath in combination with a pipelined architecture allows to scale
throughput to line-rates of 50 GbE, and beyond, when using modern FPGA fabric, and
up to 100 Gbps for ASIC implementations.

NPAP is available in versions which recently have been merged:

● Version 2 (currently 2.2.5) for new ASIC and AMD/Xilinx Ultrascale+, Intel
Stratix-10 and Agilex, Microchip PolarFire and Lattice FPGA development,
includes many recent resource optimizations plus timing optimizations focused
on pipelines in FPGA, including Intel HyperFlex and Intel HyperFlex2

● Version 1 (currently 1.10.1) back-ports bug fixes from Version 2 for long-term
customer support. Not recommended for new design starts!

MLE NPAP TB20231031 2023-10-31 Page 1

MLE TB20231031

Applications

NPAP enhances your real-time application with a leading fast data connectivity. The
powerful architecture of the underlying TCP/UDP/IP Stack allows it to transfer data at
line-rate with low processing latency without using any CPUs in the data path. The
widespread TCP/IP and/or UDP/IP communication protocol suite using industry
standard network infrastructure addresses a wide-range of applications:

● FPGA-based SmartNICs

● High-Bandwidth Security with FPGA-based Smart Data Diodes

● In-Network Compute Acceleration (INCA)

● Hardware-only implementation of TCP/IP in FPGA

● PCIe Long Range Extension 1

● Networked storage, such as iSCSI or NVMe/TCP

● Test & Measurement connectivity

● Automotive backbone connectivity based on open standards

● High-speed, low-latency camera interfaces

● Video-over-IP for 3G / 6G / 12G transports

● Bring full TCP/UDP/IP connectivity to FPGAs

● High-speed sensor data acquisition:
stream data out of FPGAs into Network-Attached Storage (NAS)

● High-speed robotics control and machine-to-machine:
Stream data from servers via FPGA into actuators

● Hyper-converged computational storage acceleration for “over-Fabric”
NVMe/TCP

● Deterministic low-latency, high-bandwidth alternative to lwIP or Linux on
embedded CPU

1

https://www.missinglinkelectronics.com/index.php/menu-products/menu-pcie-connectivity/439
-art-pcie-over-xxx

MLE NPAP TB20231031 2023-10-31 Page 2

https://www.missinglinkelectronics.com/index.php/menu-products/menu-pcie-connectivity/439-art-pcie-over-xxx
https://www.missinglinkelectronics.com/index.php/menu-products/menu-pcie-connectivity/439-art-pcie-over-xxx

MLE TB20231031

IP Core Description

High performance programmable logic based, standalone TCP/IP stack featuring
transparent handling of complete TCP/IP and UDP protocol tasks, e.g. packet encoding,
packet decoding, acknowledge generation, link supervision, timeout detection,
retransmissions and fault recovery. Complete automatic connection control including
tear up and tear down. Transparent checksum generation and checksum checking,
integrated flow control. RFC 9293 compatibility (TCP/IP stack for Windows and Linux).2

Depending on the project’s needs, deliverables can be:

● HDL source code or netlist
● Integrated FPGA system implementation
● Testbenches and scripts for real-life testing
● Comprehensive documentation and interfacing guide
● Development & design-in support

NPAP is optimized to ensure the best bandwidth-delay product performance for your
application. The IP core described herein is easy to port to FPGA and ASIC target
platforms.

Technical Features

Feature Specification

Supported on-chip Interfaces 128 bit wide AXI4-Stream

Ethernet PHY interfaces supported Standard IEEE Ethernet PHYs with RMII, GMII, XGMII,
etc via PCS/PMA via ASIC/FPGA Ethernet Subsystem

Ethernet Media Access Controller
compatibility

Fraunhofer HHI 10G/25G Low-Latency MAC
AMD/Xilinx 10G/25G Ethernet Subsystem (PG210)
AMD/Xilinx 100G Ethernet Subsystem (PG165)
Intel 10G / 25G Ethernet FPGA IP
Microchip PolarFire FPGA 10G Ethernet (UG0727)

Supported protocols (Hardware based) Ethernet, ARP, IPv4, ICMPv4, IGMPv4, UDP & TCP,
DHCP

Number of simultaneous connections One per TCP Core instantiation - see “Architecture
Choices” below, a TCP Core in NPAP relates to a TCP
socket in Linux

Interface to application Datapath via AXI4-Stream 128-bit
and separate custom TCP command interface

Supported FPGAs Complete stack uses generic VHDL code

2 https://www.rfc-editor.org/info/rfc9293

MLE NPAP TB20231031 2023-10-31 Page 3

https://www.rfc-editor.org/info/rfc9293

MLE TB20231031

Tested FPGA series AMD/Xilinx Virtex 4 to Virtex UltraScale+
AMD/Xilinx Kintex to Kintex UltraScale+
AMD/Xilinx Artix UltraScale+
AMD/Xilinx Zynq-7000
AMD/Xilinx Zynq UltraScale+ MPSoC
AMD/Xilinx Zynq UltraScale+ RFSoC
AMD/Xilinx Versal ACAP Series1
Achronix Speedster 7t1
Intel Cyclone IV series
Intel Cyclone 10 GX series
Intel Stratix V
Intel Stratix 10 GX series
Intel Agilex F, I, M Series1
Microchip Polarfire and PolarFire SoC1

1R&D Work-in-progress or on product release road-map

MLE NPAP TB20231031 2023-10-31 Page 4

MLE TB20231031

Implementation Details

Highly modular implementation using standard AXI4 interfaces to support RTL
synthesis flows for various FPGA vendors and ASIC RTL design flows.

MLE NPAP TB20231031 2023-10-31 Page 5

MLE TB20231031

Starting with Release 1.7.1. RTL is optimized for FPGA pipelining such as Intel Hyperflex
or AMD/Xilinx IMux. Starting with Release 2.0 RTL has further been optimized for Intel
HyperFlex and Intel HyperFlex2.

Deliverables include IEEE 1685 IP-XACT packages including “NPAP Support IP” blocks
plus non-IP-XACT FPGA reference design project.

Version AMD/Xilinx Intel Microchip

NPAP 2.2.5. Vivado 2022.2 Quartus 22.4 Libero 2022.3

NPAP 1.10.1 Vivado 2018.3 Quartus 22.1 Libero 2021.2

MLE NPAP TB20231031 2023-10-31 Page 6

MLE TB20231031

Latency Analysis Results
MLE analyzed processing latency using RTL simulation of two instances of NPAP
(clocked at 175 MHz) connected via the 10G LL MAC via XGMII (clocked at 156.25 MHz).

TCP Payload Size [Byte] Latency [ns]

1 462,8

32 485,8

64 520,0

160 656,0

448 1092,1

960 1868,9

1216 2251,3

1456 2622,7

Latency was measured “door-to-door”, i.e. we measured the time difference between
sending payload data from one NPAP instance via TCP/IP until receiving that payload
data at the other instance of NPAP, see the system-level block diagram:

Obviously, increasing the NPAP clock frequency will reduce RTT latency.

MLE NPAP TB20231031 2023-10-31 Page 7

MLE TB20231031

Architecture Choices

NPAP implements a full accelerator, hence all network protocol processing is running
as digital logic. NPAP does not instantiate any “soft” CPUs, nor does NPAP rely on
external CPUs to fully function. This gives NPAP a very deterministic low latency and
makes performance very scalable over circuit area / FPGA resources.

The following block diagram highlights key implementation aspects:

MLE NPAP TB20231031 2023-10-31 Page 8

MLE TB20231031

● The (horizontal) datapath is full duplex 128 bits wide using AXI4 Stream

● The (vertical) control path is AXI4 Lite register interfaces with HDL wrappers

● NPAP brings its own 10G/25G Low-Latency Ethernet MAC,
but can also interface with Ethernet subsystems from the FPGA vendors

● NPAP implements a complete TCP/UDP/IPv4 stack including functions like ARP,
ICMP, IGMP, DHCP

● NPAP is delivered with “Support IP blocks” including design examples for setting
MAC addresses and/or IP addresses and/or TCP port numbers either from
Programmable Logic / ASIC or via software running on a (Linux) host, either
ARM or x86 based

● For each TCP connection that remains open at the same time, there shall be
one instance of a TCP Core

● One and only one single instance of a UDP Core must be instantiated when UDP
support is required. If there is no need to process UDP, then the UDP Core can
be removed completely

● NPAP is highly parameterizable
○ Number of UDP Cores (zero or one)
○ Number of TCP Cores (zero or many)
○ For each TCP Core: Rx Buffer Size and, separately, Tx Buffer Size

● Other than Rx and Tx buffers and some buffers for clock domain crossings,
NPAP hardly uses any buffers at all, which results in very low and deterministic
latency

● Your “Layer 7” Application can directly be connected to NPAP via AXI4 Stream
which gives you the option of keeping all traffic inside the Programmable Logic /
ASIC, and/or to interface with “software” running on (Linux) host, either ARM
based or x86 based, via DMA

Team MLE has gained long and deep experiences with integrating NPAP into systems
and will support you in identifying, implementing and testing the right architecture
choice. Key aspects are outlined below. Please contact us for more details.

Picking the “Right” TCP Peer

NPAP is fully interoperable with (almost) any other TCP/UDP/IP stack. When you
optimize data transports towards low latency and/or high bandwidth, keep in mind
how both, TCP flow control and TCP congestion control, function and do parameterize
both peers accordingly.

NPAP runs the entire protocol stack as a digital circuit. So, when NPAP is on the
receiving side TCP packets will be checked, and acknowledged (ACK’ed), in a very short
time and at a very high rate (close to line rate). That may challenge a “slow sender”.

MLE NPAP TB20231031 2023-10-31 Page 9

MLE TB20231031

Similarly, when NPAP is on the sending side, TCP packets will be generated and sent in
a very short time and at a very high rate (close to line rate). That may challenge a “slow
receiver”.

Experimenting, and tweaking parameters on either side, is key to deliver good
performance. Predictable high bandwidth and low latency is typically delivered by a
“balanced” TCP connection such as putting NPAP on both sides.

Picking the Right TCP Rx/Tx Buffer Sizes

Obviously, larger Tx and Rx buffers deliver higher bandwidths, but at the cost of
transport latency. Worse, NPAP Tx and Rx buffers require expensive FPGA BRAM
resources. To help you pick a good tradeoff, here is the metric to determine TCP buffer
sizes for TCP (keep in mind, that TCP buffers are placed on both ends: Tx side and Rx
side):

● Buffer size (in bits) = Bandwidth (in bits-per-second) * RTT (in seconds)

RTT is the Round-Trip Time which is the time for the sender to transmit the data plus
the time-of-flight for the data, plus the time it takes the recipient to check for packet
correctness (CRC), plus the time for the recipient to send out the ACK, plus the
time-of-flight for the ACK, plus the time it takes the sender to process the ACK and
release the buffer. Here examples:

1. If the recipient is NPAP in a direct connection then we can assume ACK times
less than 20 microseconds, i.e. buffer sizes shall be 200k bits. Means in this case
one single 32 kBytes FPGA BRAM will be sufficient.

2. If the recipient is software then RTT can be much longer, mostly due to the
longer processing times in the OS on the recipient side. For a modern Linux we
can assume RTT of 100 microseconds, or longer (you can run ‘Netperf’ on your
machine to find out). Means buffer sizes shall be around 1M bits, or the 128K
Bytes of BRAM we typically instantiate.

NPAP allows to set Tx and Rx buffer sizes individually and per each TCP Core, to
facilitate optimizations for more unidirectional dataflows.

Picking the Right Number of TCP Cores

In typical software systems, the cost of opening a TCP connection is quite CPU
expensive, and may take a long time because of RTT and processing times in the
operating system. Therefore, most software driven systems keep a TCP connection
alive “forever” rather than closing it. The low costs of system RAM for storing each TCP
connections’ state are not worth the CPU processing costs.

For NPAP, each TCP connection which is open at the same time requires a dedicated
TCP Core, which costs FPGA / ASIC resources. However, if RTT is low such as in a LAN,

MLE NPAP TB20231031 2023-10-31 Page 10

MLE TB20231031

and with the very low costs of opening and closing a TCP connection in NPAP (a few
hundred FPGA clock cycles), “time sharing” TCP Cores can save a lot of FPGA resources
without any negatives.

Optimizing NPAP for Linerate Performance

MLE has been working with FPGA vendors to constantly improve NPAP clock
frequency. While NPAP originally was designed for ASIC implementation, MLE has
adopted NPAP for efficient implementation using modern FPGA devices. Unlike other
TCP stacks for FPGA, NPAP features a 128 bit wide bi-directional datapath which puts
NPAP into a unique position for realizing high-bandwidth FPGA-based SmartNICs.

Larger bit widths, 512 bits or more, cause “bloat” which is wasting FPGA resources.
Smaller bit widths, 64 bits or less, do require unrealistic high clock frequencies to
deliver high linerates as the following table shows:

10 Gbps 25 Gbps 50 Gbps 100 Gbps

32 bit 312.5 MHz 781.25 MHz 1,562.5 MHz 3,125.0 MHz

64 bits 156.25 MHz 390.625 MHz 781.25 MHz 1,562.5 MHz

128 bits 78.125 MHz 195.3 MHz 390.625 MHz 781.25 MHz

512 bits 19.5 MHz 48.8 MHz 97.7 MHz 195.3 MHz

Combining NPAP With FPGA Network Interface Cards (NIC)

An FPGA Network Interface Card (NIC) does some network packet handling in FPGA
logic and then DMA’s the data into a (Linux) host computer. At MLE we have been using
(and contributing to) the Corundum project: http://corundum.io

Corundum is an open-source, high-performance FPGA-based NIC and platform for
In-Network Compute. Features include a high performance datapath, 10G/25G/100G
Ethernet, PCIe connectivity to the host, a custom, high performance, tightly-integrated
PCIe DMA engine, many (1000+) transmit, receive, completion, and event queues,
scatter/gather DMA, MSI, multiple interfaces, multiple ports per interface, per-port
transmit scheduling including high precision TDMA, flow hashing, RSS, checksum
offloading, and native IEEE 1588 PTP timestamping. A Linux driver is included that
integrates with the Linux networking stack. Development and debugging is facilitated
by an extensive simulation framework that covers the entire system from a simulation
model of the driver and PCI express interface on one side to the Ethernet interfaces on
the other side (https://docs.corundum.io/en/latest/contents.html).

One of the key advantages of the Corundum architecture is support for In-Network
Processing inside the FPGA logic, shown as “App” in the block diagram:

MLE NPAP TB20231031 2023-10-31 Page 11

http://corundum.io
https://docs.corundum.io/en/latest/contents.html

MLE TB20231031

These Corundum “Apps” can serve as a “turbo”, and one of those turbos can be NPAP.
This is quickly evolving so please contact us for more information!

Implementing Time-Sensitive Networking (TSN)

TSN has become a set of emerging, open IEEE standards with momentum in industrial
markets (for 10/100/1000 Mbps speed) and in next-generation Automotive Zone
architectures (for 10/25/50 Gbps speeds). Aspects such as Time-Aware Traffic Shaping
also find application in telecommunication, Provider Back-Bone (PBB) Switching or
Software-Define Wide Area Networks (SD-WAN), for example. TSN and TCP can be
combined according to the OSI Layers.

The outcome is a deterministic and reliable network protocol, which makes TCP/IP over
TSN a very good candidate for all networking where IT (Information Technology) and
OT (Operations Technology) converge, or in Systems-of-Systems backbones. TSN itself
is quickly evolving so please contact us for more information!

MLE NPAP TB20231031 2023-10-31 Page 12

MLE TB20231031

Linux Kernel Bypass With NPAP

Increased Ethernet speeds push a need to offload CPUs from the burden of
TCP/UDP/IP processing. Various kernel bypass options exist, some include so-called
RDMA (Remote DMA). NPAP can provide architecture choices for implementing such
kernel bypass.

Normally, from a CPU’s perspective, TCP socket I/O means sending and/or receiving
(raw) network data between the host CPU and the NIC. The kernel runs network
protocol processing for IPv4, TCP, and socket APIs. User space applications that
generate and/or digest the network data add to the CPU processing burden.

RDMA skips most steps and a so-called rNIC (RDMA NIC) device driver directly
interfaces with user space memory, effectively bypassing the kernel.

NPAP can operate in a similar way, where NPAP does all TCP/IP processing in dedicated
ASIC / FPGA logic and then a (Linux) device driver copies the payload data between
user space memory and NPAP.

Adding Transport Layer Security (TLS)

MLE has been working with partner Xiphera to integrate NPAP with Xiphera’s TLS IP
Cores for FPGA. Successful integration has been delivered to first customers. This is
also quickly evolving so please contact us for more information!

MLE NPAP TB20231031 2023-10-31 Page 13

MLE TB20231031

NPAP Evaluation Choices
MLE offers multiple ways to evaluate and benchmark NPAP:

● Our Remote Evaluation System (RES) hosts a dedicated NPAP installation in the
“MLE Cloud”

● Free-of-charge Evaluation Reference Designs are available for a limited set of
off-the-shelf hardware

● A “Developers License” is a highly discounted extended evaluation license which
gives you full source code access to integrate and run NPAP within your target
hardware

Evaluation Reference Designs
For evaluating the functioning and the performance of NPAP MLE provides Evaluation
Reference Designs (ERD) for several FPGA Development Kits:

● NPAP-25G on AMD/Xilinx ZCU111 with Zynq Ultrascale+ RFSoC ZU28EG
● NPAP-100G on AMD/Xilinx ZCU111 with Zynq Ultrascale+ RFSoC ZU28EG
● NPAP-100G on ProDesign Falcon with Intel Agilex-7M
● NPAP-10G on Intel Stratix 10 GX Development Kit / on MLE NPAC
● NPAP-25G on Intel N6001-PL (Agilex AGF014 F Series FPGA)
● NPAP-10G on Microchip PolarFire MPF300-EVAL-KIT

Each ERD typically instantiates the full stack including MAC, Ethernet, IPv4 (with ICMP
and IGMP), plus 10 TCP session instances, plus the UDP block, plus Netperf/Netserver
implementation in programmable logic. The Netperf/Netserver block is compatible
with open source Netperf/Netserver 2.6 and can be used for functionality analysis and
for performance benchmarking.

For SoC-FPGAs such as AMD/Xilinx Zynq-7000 or AMD/Xilinx Zynq UltraScale+ MPSoC
the ERD can run Linux, and Netperf/Netserver control commands can be set and
results can be looked at by logging in via UART or SSH (RJ45).

Here some exemplary setups from MLE’s NPAP Test Lab:

MLE NPAP TB20231031 2023-10-31 Page 14

MLE TB20231031

MLE NPAP TB20231031 2023-10-31 Page 15

MLE TB20231031

Resource Estimates for ASIC and Other FPGA

While NPAP has been implemented using re-targetable RTL HDL code we just cannot
provide resource estimates for all possible target technologies. If you are interested in
integrating NPAP into another target technology, please contact us.

Resource Estimates for AMD/Xilinx Ultrascale+ Series
The following table shows resources for AMD/Xilinx Zynq Ultrascale+ MPSoC ZU19EG
compiled with Xilinx Vivado 2018.3 - instantiating the following design features:

● 10 GigE Low-Latency MAC from Fraunhofer HHI
● Ethernet block
● IPv4 block
● UDP block
● 3 instances of TCP blocks

+------------------------------------+----------------------------+--------+--------+------+------+-------+--------+--------+--------+
| | | Total | Logic | LUT | | | | | DSP48 |
| Instance | Module | LUTs | LUTs | RAMs | SRLs | FFs | RAMB36 | RAMB18 | Blocks |
+------------------------------------+----------------------------+--------+--------+------+------+-------+--------+--------+--------+
npap_tcp_udp_wrapper_u0	npap_tcp_udp_wrapper	33277	31755	1506	16	35034	71	10	6
npap_tcp_udp_wrapper_u0	npap_tcp_udp_wrapper	31359	29837	1506	16	34053	71	10	6
(npap_tcp_udp_wrapper_u0)	npap_tcp_udp_wrapper	65	65	0	0	0	0	0	0
npap_tcp_udp_top_u0	npap_tcp_udp_top	31294	29772	1506	16	34053	71	10	6
(npap_tcp_udp_top_u0)	npap_tcp_udp_top	0	0	0	0	1	0	0	0
gen_hhi_to_axis_adapter[0].u	hhi_to_axis_adapter_5	8	8	0	0	0	0	0	0
gen_hhi_to_axis_adapter[1].u	hhi_to_axis_adapter_6	8	8	0	0	0	0	0	0
gen_hhi_to_axis_adapter[2].u	hhi_to_axis_adapter_7	8	8	0	0	0	0	0	0
wrapper_ll_ip_tcp_u0	Wrapper_LL_IP_TCP	31270	29748	1506	16	34052	71	10	6
(wrapper_ll_ip_tcp_u0)	Wrapper_LL_IP_TCP	42	42	0	0	203	0	0	0
GEN_MAC_NET_CONV_HHI.u	MacNetworkLayerConversion	370	290	80	0	554	0	0	0
g0.i_tcpTxMux	TcpTxMux	242	242	0	0	3	0	0	0
gen_WithUdp.i_udp	wrapper_udp	2226	2144	82	0	3243	19	1	0
gen_tcpConnections[0].u	Wrapper_TCP__xdcDup__1	8030	7598	432	0	8113	16	3	2
gen_tcpConnections[1].u	Wrapper_TCP__xdcDup__2	7962	7530	432	0	8117	16	3	2
gen_tcpConnections[2].u	Wrapper_TCP	8018	7586	432	0	8117	16	3	2
iBusScheduler8	BusScheduler8	85	85	0	0	53	0	0	0
i_internetLayer	Wrapper_IP	2286	2222	48	16	2908	2	0	0
i_networkLayer	Wrapper_Networklayer	2051	2051	0	0	2737	2	0	0
i_rxLinkResetSync	ResetSync__xdcDup__20	0	0	0	0	2	0	0	0
i_txLinkResetSync	ResetSync__xdcDup__21	0	0	0	0	2	0	0	0
mac_10_gbe_wrapper_u0	mac10gbe_wrapper	1918	1918	0	0	981	0	0	0
mac10gbe_top_u0	mac10gbe_top	1918	1918	0	0	981	0	0	0
mac10Gbe_struct_u0	mac10Gbe_struct	1918	1918	0	0	981	0	0	0
+------------------------------------+----------------------------+--------+--------+------+------+-------+--------+--------+--------+

MLE NPAP TB20231031 2023-10-31 Page 16

MLE TB20231031

Resource Estimates for AMD/Xilinx 7-Series
The following table shows resources for AMD/Xilinx 7-Series Kintex fabric (XC7Z045-2)
compiled with Xilinx Vivado 2014.4 - instantiating the following design features:

● 10 GigE Low-Latency MAC from Fraunhofer HHI
● Ethernet block
● IPv4 block
● UDP block
● 2 instances of TCP blocks

+-----------------------------+---+-------+-------+------+------+-------+--------+--------+--------+
| | | Total | Logic | LUT | | | | | DSP48 |
| Instance | Module | LUTs | LUTs | RAMs | SRLs | FFs | RAMB36 | RAMB18 | Blocks |
+-----------------------------+---+-------+-------+------+------+-------+--------+--------+--------+
wrapper_mac_10gStack	(top)	29459	28425	904	130	25727	50	6	4
(wrapper_mac_10gStack)	(top)	241	241	0	0	0	0	0	0
i_10GStack	Wrapper_LL_IP_TCP__parameterized0	27045	26013	904	128	24644	50	6	4
g0.i_tcpTxMux	TcpTxMux__parameterized0	0	0	0	0	3	0	0	0
gen_WithUdp.i_udp	wrapper_udp__parameterized0	3538	3350	92	96	3732	14	0	0
gen_tcpConnections[0].i	Wrapper_TCP__parameterized0	9347	8963	384	0	7938	16	3	2
gen_tcpConnections[1].i	Wrapper_TCP__parameterized0_1	9349	8965	384	0	7938	16	3	2
iBusScheduler8	BusScheduler8__parameterized0	568	568	0	0	31	0	0	0
i_internetLayer	Wrapper_IP__parameterized0	2989	2913	44	32	3437	2	0	0
i_netLayerConv	MacNetworkLayerConversion__parameterized0	139	139	0	0	72	0	0	0
i_networkLayer	Wrapper_Networklayer__parameterized0	1125	1125	0	0	1491	2	0	0
i_txLinkResetSync	ResetSync__parameterized0_2	0	0	0	0	2	0	0	0
i_ResetStretch_aux	ResetStretch__parameterized0	75	74	0	1	35	0	0	0
i_ResetStretch_stack	ResetStretch__parameterized2	75	74	0	1	34	0	0	0
i_clk_stretch	clk_stretch	1	1	0	0	29	0	0	0
i_gen100ms	GenClk100ms__parameterized0	69	69	0	0	30	0	0	0
i_mac10GbE	mac10Gbe_Wrapper__parameterized0	1957	1957	0	0	955	0	0	0
(i_mac10GbE)	mac10Gbe_Wrapper__parameterized0	0	0	0	0	1	0	0	0
i_mac10Gbe	mac10Gbe__parameterized0	1957	1957	0	0	954	0	0	0
+-----------------------------+---+-------+-------+------+------+-------+--------+--------+--------+

MLE NPAP TB20231031 2023-10-31 Page 17

MLE TB20231031

Resource Estimates for Intel Stratix-10

The following table shows resources for compiled with Quartus Prime v19.3 for
1SX280HN2F43E2VG - instantiating the following design features:

● 10 GigE Low-Latency MAC from Fraunhofer HHI
● Ethernet block
● IPv4 block
● UDP block
● 3 instances of TCP blocks

+--+--------------------+--------------+---------------+--------------+------------+-------+---
-----+
| | ALMs used | | Dedicated | | Block | |
|
| | in final | ALMs used | Combinational | Logic | Memory | |
DSP |
|Compilation Hierarchy Node | placement | for memory | ALUTs | Registers | Bits | M20Ks|
Blocks |
+--+--------------------+--------------+---------------+--------------+------------+-------+---
-----+
| | 35194.0 (4.2) | 200.0 (0.0) | 44839 (18) | 34020 (0) | 2112512 | 163 |
3 |
| gen_loopback_tcp_interface_wrapper_top[0].u | 100.2 (0.0) | 0.0 (0.0) | 57 (0) | 172 (0) | 0 | 0 |
0 |
| gen_loopbackServer.i_loopbackServer | 100.2 (100.2) | 0.0 (0.0) | 57 (57) | 172 (172)| 0 | 0 |
0 |
| gen_loopback_tcp_interface_wrapper_top[1].u | 99.1 (0.0) | 0.0 (0.0) | 57 (0) | 172 (0) | 0 | 0 |
0 |
| gen_loopbackServer.i_loopbackServer | 99.1 (99.1) | 0.0 (0.0) | 57 (57) | 172 (172)| 0 | 0 |
0 |
| gen_loopback_tcp_interface_wrapper_top[2].u | 101.4 (0.0) | 0.0 (0.0) | 57 (0) | 172 (0) | 0 | 0 |
0 |
| gen_loopbackServer.i_loopbackServer | 101.4 (101.4) | 0.0 (0.0) | 57 (57) | 172 (172)| 0 | 0 |
0 |
| mac_10_gbe_wrapper_u0 | 2089.5 (0.0) | 0.0 (0.0) | 2926 (0) | 1378 (0) | 0 | 0 |
0 |
| mac10gbe_top_u0 | 2089.5 (0.0) | 0.0 (0.0) | 2926 (0) | 1378 (0) | 0 | 0 |
0 |
| npap_tcp_udp_wrapper_u0 | 32624.9 (0.0) | 200.0 (0.0) | 41429 (0) | 31867 (0) | 2112512 | 163 |
3 |
| npap_tcp_udp_top_u0 | 32624.9 (2.2) | 200.0 (0.0) | 41429 (4) | 31867 (1) | 2112512 | 163 |
3 |
| wrapper_ll_ip_tcp_u0 | 32622.7 (67.2) | 200.0 (0.0) | 41425 (1) | 31866 (196)| 2112512 | 163 |
3 |
| GEN_MAC_NET_CONV_HHI.i_netLayerConv | 1948.2 (9.2) | 0.0 (0.0) | 785 (15) | 2655 (0) | 0 | 0 |
0 |
| gen_64bitAlign.i_rxAlign | 74.2 (74.2) | 0.0 (0.0) | 13 (13) | 145 (145)| 0 | 0 |
0 |
| gen_rxSyncFifo.i_fifoCDC | 1855.4 (1855.4) | 0.0 (0.0) | 744 (744) | 2507 (2507|) 0 | 0 |
0 |
| i_nlToMacMux | 9.3 (9.3) | 0.0 (0.0) | 13 (13) | 3 (3) | 0 | 0 |
0 |
| g0.i_tcpTxMux | 1.7 (1.7) | 0.0 (0.0) | 3 (3) | 3 (3) | 0 | 0 |
0 |
| gen_WithUdp.i_udp | 485.7 (0.8) | 0.0 (0.0) | 626 (0) | 888 (2) | 278560 | 18 |
0 |
| gen_tcpConnections[0].i_tcp | 8480.2 (35.9) | 60.0 (0.0) | 11408 (12) | 7936 (87) | 593568 | 45 |
1 |
| gen_tcpConnections[1].i_tcp | 8460.5 (40.8) | 60.0 (0.0) | 11357 (12) | 7600 (87) | 593568 | 45 |
1 |
| gen_tcpConnections[2].i_tcp | 8497.9 (34.8) | 60.0 (0.0) | 11376 (12) | 7801 (86) | 593568 | 45 |
1 |
| iBusScheduler8 | 86.2 (86.2) | 0.0 (0.0) | 136 (136) | 55 (55) | 0 | 0 |
0 |
| i_internetLayer | 2741.3 (6.2) | 20.0 (0.0) | 3560 (10) | 2657 (5) | 17920 | 6 |
0 |
| i_networkLayer | 1851.8 (0.0) | 0.0 (0.0) | 2173 (0) | 2071 (0) | 35328 | 4 |
0 |
| i_rxLinkResetSync | 1.0 (1.0) | 0.0 (0.0) | 0 (0) | 2 (2) | 0 | 0 |
0 |
| i_txLinkResetSync | 1.0 (1.0) | 0.0 (0.0) | 0 (0) | 2 (2) | 0 | 0 |
0 |
+--+--------------------+--------------+---------------+--------------+------------+-------+---
-----+

MLE NPAP TB20231031 2023-10-31 Page 18

MLE TB20231031

Resource Estimates for Microchip Polarfire

The following table shows resources synthesized for Microchip PolarFire
MPF300TS-1FCG1152I using Libero 2021.1 - instantiating the following design features:

● Ethernet block
● IPv4 block
● UDP block
● 3 instances of TCP blocks

+-------------------------------+--------+--------+-----------+-----------+-------+-------+-------+--------+
| | Fabric | Fabric | Interface | Interface | uSRAM | LSRAM | Math | Chip |
| Instance | 4LUT | DFF | 4LUT | DFF | 1K | 18K | 18x18 | Global |
+-------------------------------+--------+--------+-----------+-----------+-------+-------+-------+--------+
npap_tcp_udp_wrapper_u0	60339	31116	6792	6792	122	146	2	12
npap_tcp_udp_top_u0	60339	31116	6792	6792	122	146	2	12
Primitives	13	1	0	0	0	0	0	0
interface_adapter (all)	57	1	0	0	0	0	0	0
wrapper_ll_ip_tcp_u0	60269	31115	6792	6792	122	146	2	12
Primitives	349	195	0	0	0	0	0	0
i_netLayerConv	249	206	0	0	0	0	0	0
i_tcpTxMux	123	2	0	0	0	0	0	0
gen_WithUdp.i_udp	5598	3997	1548	0	24	35	0	0
gen_tcpConnections[0].i	15560	7037	1740	1740	31	37	0	3
gen_tcpConnections[1].i	13287	6649	1068	1068	26	19	2	3
gen_tcpConnections[2].i	15707	7112	1752	1752	35	37	0	3
iBusScheduler8	106	34	0	0	0	0	0	0
i_internetLayer	3717	2995	216	216	6	4	0	1
i_networkLayer	5306	2665	504	504	0	14	0	0
+-------------------------------+--------+--------+-----------+-----------+-------+-------+-------+--------+

MLE NPAP TB20231031 2023-10-31 Page 19

MLE TB20231031

Detailed protocol support according RFC1122 (excerpt)

Ethernet Layer

Feature Section

Send Trailers by default without negotiation
ARP

Flush out-of-date ARP cache entries
Prevent ARP floods

Ethernet and IEEE 802 Encapsulation
Host able to:

Send & receive RFC-894 encapsulation
Send K1=6 encapsulation
Use ARP on Ethernet and IEEE 802 nets

Link layer report b'casts to IP layer
IP layer pass TOS to link layer
No ARP cache entry treated as Dest. Unreach.

2.3.1
2.3.2
2.3.2.1
2.3.2.1
2.3.3
2.3.3
2.3.3
2.3.3
2.3.3
2.4
2.4
2.4

x
x

x

x
x
x

x

x

x

x

(x)
(x)

x

x

x

IP & ICMP Layer

Feature Section

Implement IP and ICMP
Handle remote multihoming in application layer
Meet gateway specs if forward datagrams
Silently discard Version != 4
Verify IP checksum, silently discard bad dgram
Addressing:

Subnet addressing (RFC-950)
Src address must be host's own IP address
Silently discard datagram with bad dest addr
Silently discard datagram with bad src addr

Support reassembly

TOS:

3.1
3.1
3.1
3.2.1.1
3.2.1.2

3.2.1.3
3.2.1.3
3.2.1.3
3.2.1.3
3.2.1.4

x
x
x
x
x

x
x
x
x
x

x
x
-
x
x

-
x
x
x
-

MLE NPAP TB20231031 2023-10-31 Page 20

MLE TB20231031

Allow transport layer to set TOS
TTL:

Send packet with TTL of 0
Discard received packets with TTL > 2
Allow transport layer to set TTL
Fixed TTL is configurable

IP Options:
Allow transport layer to send IP options
Pass all IP options rcvd to higher layer
IP layer silently ignore unknown options
Silently ignore Stream Identifier option

Source Route Option:
Originate & terminate Source Route options
Datagram with completed SR passed up to TL
Build correct (non-redundant) return route
Send multiple SR options in one header

ROUTING OUTBOUND DATAGRAMS:
Use address mask in local/remote decision
Operate with no gateways on conn network
Maintain "route cache" of next-hop gateways
If no cache entry, use default gateway

Support multiple default gateways

Able to detect failure of next-hop gateway
Ping gateways continuously
Ping only when traffic being sent
Ping only when no positive indication
Switch from failed default g'way to another
Manual method of entering config info

REASSEMBLY and FRAGMENTATION:
Able to reassemble incoming datagrams
Transport layer able to learn MMSR
Send ICMP Time Exceeded on
reassembly timeout
Pass MMSS to higher layers

MULTIHOMING:
Allow application to choose local IP addr

BROADCAST:
Broadcast addr as IP source addr
Recognize all broadcast address formats
Use IP b'cast/m'cast addr in link-layer b'cast

3.2.1.6

3.2.1.7
3.2.1.7
3.2.1.7
3.2.1.7

3.2.1.8
3.2.1.8
3.2.1.8
3.2.1.8b

3.2.1.8c
3.2.1.8c
3.2.1.8c
3.2.1.8c

3.3.1.1
3.3.1.1
3.3.1.2
3.3.1.2
3.3.1.2

3.3.1.4
3.3.1.4
3.4.1.4
3.3.1.4
3.3.1.5
3.3.1.6

3.3.2
3.3.2

3.3.2
3.3.3

3.3.4.2

3.2.1.3
3.3.6
3.3.6

x

x
x

x
x
x
x

x
x
x
x

x
x
x
x
x

x

x
x
x
x

x
x

x
x

x

x
x

x
x

x

x

-

x
-
-
x

-
-
x
x

-
-
-
-

x
x
-
x
-

-
-
-
-
-
-

-
-

-
-

x

-
-
-

MLE NPAP TB20231031 2023-10-31 Page 21

MLE TB20231031

INTERFACE:
Allow transport layer to use all IP mechanisms
Pass interface ident up to transport layer
Pass all IP options up to transport layer
Transport layer can send certain ICMP
messages
Pass spec'd ICMP messages up to transp. layer
Include IP hdr+8 octets or more from orig.

ICMP:
Echo server
Echo client
Use specific-dest addr as Echo Reply src
Send same data in Echo Reply
Pass Echo Reply to higher layer
Reverse and reflect Source Route option
Use IP b'cast/m'cast addr in link-layer b'cast

3.4
3.4
3.4

3.4
3.4
3.4

3.2.2.6
3.2.2.6
3.2.2.6
3.2.2.6
3.2.2.6
3.2.2.6
3.3.6

x
x
x

x
x
x

x
x
x
x
x
x
x

-
-
-

-
-
-

-
x
x
x
x
-
-

TCP Layer

Feature Section

Push flag
ESEND call can specify PUSH

If cannot: sender buffer indefinitely
If cannot: PSH last segment

Window
Treat as unsigned number
Robust against shrinking window
Sender probe zero window
Allow window stay zero indefinitely
Sender timeout OK conn with zero wind

TCP Options
Receive TCP option in any segment
Ignore unsupported options
Cope with illegal option length
Implement sending & receiving MSS option
Send-MSS default is 536

4.2.2.2
4.2.2.2
4.2.2.2

4.2.2.3
4.2.2.16
4.2.2.17
4.2.2.17
4.2.2.17

4.2.2.5
4.2.2.5
4.2.2.5
4.2.2.6
4.2.2.6

x

x
x
x
x

x
x
x
x
x

x

x

-

x

x
-
(x)
x
x

x
x
-
x
x

MLE NPAP TB20231031 2023-10-31 Page 22

MLE TB20231031

Calculate effective send seg size

TCP Checksums
Sender compute checksum
Receiver check checksum

Use clock-driven ISN selection

Opening Connections
Support simultaneous open attempts
SYN-RCVD remembers last state
Passive Open call interfere with others
Function: simultan. LISTENs for same port
Ask IP for src address for SYN if necc.

Otherwise, use local addr of conn.
OPEN to broadcast/multicast IP Address
Silently discard seg to bcast/mcast addr

Closing Connections
Inform application of aborted conn
In TIME-WAIT state for 2 x MSL seconds

Retransmissions
Jacobson Slow Start algorithm
Jacobson Congestion-Avoidance algorithm
Karn's algorithm
Jacobson's RTO estimation alg.
Exponential backoff

Generating ACK's:
Process all Q'd before send ACK
Receiver SWS-Avoidance Algorithm

4.2.2.6

4.2.2.7
4.2.2.7

4.2.2.9

4.2.2.10
4.2.2.11
4.2.2.18
4.2.2.18
4.2.3.7
4.2.3.7
4.2.3.14
4.2.3.14

4.2.2.13
4.2.2.13

4.2.2.15
4.2.2.15
4.2.3.1
4.2.3.1
4.2.3.1

4.2.2.20
4.2.3.3

x

x
x

x

x
x

x
x
x

x

x
x

x
x
x
x

x
x

x

x

x

x
x

x

-
-
-

x
x
-
-

x
x
-
-
-
-
-

x
-

MLE NPAP TB20231031 2023-10-31 Page 23

MLE TB20231031

Developer Documentation

A comprehensive product design guide (currently version 2.2.6) with detailed
description of the functions and how to integrate is available under license.

MLE NPAP TB20231031 2023-10-31 Page 24

MLE TB20231031

MLE NPAP TB20231031 2023-10-31 Page 25

MLE TB20231031

Changelog

The following lists MLE’s engineering changelog for NPAP. With the release of NPAP
v2.2.0 the development cycle has changed from 1.x to 2.x.

NPAP Version 2 Development

● 2.2.5 (20230930)

○ GENERAL

■ #5963 - update timeouts to be clock depended

● 2.2.4 (20230919)

○ TCP

■ #5954 - harden TCP against lost ACK

● 2.2.3 (20230831)

○ GENERAL

■ #5880 - remove unused reset stretch modules

● 2.2.2 (20230731)

○ TCP

■ #5805 - fix out of order received ACK handling

● 2.2.1 (20230630)

○ UDP

■ #5707 - fix UDP meta data handling

● 2.2.0 (20230531)

○ GENERAL

■ #5652 - internal code merge and structure update (technically
NPAP v2.2.0 is identically with v2.1.2, the code history has a
different merge / rebase history)

● 2.1.2 (20230411)

○ TCP

■ #5562 - add support for partially ACKed packages

● 2.1.1 (20230331)

MLE NPAP TB20231031 2023-10-31 Page 26

https://openproject.missinglinkelectronics.com/work_packages/5562

MLE TB20231031

○ version changes not included

■ sync with NPAP 1.10.1

○ IPGUI

■ #5560 - remove AXI4-S MAC TDATA width setting from
customisation GUI

■ #5569 - buffer size: make IP customisation GUI default the same
as HDL default

○ GENERAL

■ #5668 - clock are now associated to the AXI4-L interface

● 2.1.0 (20230306)

○ TCP

■ #5554 - fix signal overflow on TCP transmit controller

■ #5555 - fix signal overflow on TCP receive buffer calculation signal

● 2.0.1 (20220822)

○ version changes not included

■ NPAP 1.9.2 to 1.10.0

○ GENERAL

■ #4836 - add priority scheduler

● 2.0.0 (20220715)

○ version changes not included

■ NPAP 1.9.2 to 1.10.0

○ GENERAL

■ #2854 - remove NPAP application CDCs from code base

■ #3944 - NPAP Performance Enhancement and Clean Up (parts)

■ #4398 - remove 8bit data path

■ #4399 - remove dma code fragments

■ #4834 - add QoS interfaces and generics

■ #4835 - add register interface for priority settings

○ ETHERNET

MLE NPAP TB20231031 2023-10-31 Page 27

https://openproject.missinglinkelectronics.com/work_packages/5560
https://openproject.missinglinkelectronics.com/work_packages/5569
https://openproject.missinglinkelectronics.com/work_packages/5668
https://openproject.missinglinkelectronics.com/work_packages/5554
https://openproject.missinglinkelectronics.com/work_packages/5555
https://openproject.missinglinkelectronics.com/work_packages/4836
https://openproject.missinglinkelectronics.com/work_packages/2854
https://openproject.missinglinkelectronics.com/work_packages/3944
https://openproject.missinglinkelectronics.com/work_packages/4398
https://openproject.missinglinkelectronics.com/work_packages/4399
https://openproject.missinglinkelectronics.com/work_packages/4834
https://openproject.missinglinkelectronics.com/work_packages/4835

MLE TB20231031

■ #4601 - change MAC interface to standard 128 Bit AXIS

NPAP Version 1 Development

Not recommended for new design starts!

● 1.10.1 (20230331)

○ TCP

■ #5554 - fix overflow on allow payload size register

■ #5557 - fix minimum value for G_TCP_RX_MAX_FRAME_NUMBER
and
G_TCP_TX_MAX_FRAME_NUMBER

■ #5639 - fix TCP window calculation after window scale is set

● 1.10.0 (20220930)

○ TCP

■ #4389 - add TCP Cmd TcpCmdSetTcpPsh

■ #4888 - fix TCP session handling with same destination port

■ #4916 - fix TCP splitter generating overlong packages

■ #5007 - fix bug where changing RTO values could lead to TCP
Cmd interface to hang

● 1.9.2 (20220718)

○ GENERAL

■ #4805 - TCP session do not transfer data reliably on first
connection (Microchip only)

● 1.9.1 (20220503)

○ GENERAL

■ #4741 - fix wrong license header

● 1.9.0 (20220430)

○ TCP

■ #4700 - add per TCP session configurable buffer sizes and
configurable MSS

○ UDP

■ #4700 - add new parameter G_TX_MAX_DATAGRAM_SIZE

● 1.8.0 (20220331)

MLE NPAP TB20231031 2023-10-31 Page 28

https://openproject.missinglinkelectronics.com/work_packages/4601
https://openproject.missinglinkelectronics.com/work_packages/5554
https://openproject.missinglinkelectronics.com/work_packages/5557
https://openproject.missinglinkelectronics.com/work_packages/5639
https://openproject.missinglinkelectronics.com/work_packages/4389
https://openproject.missinglinkelectronics.com/work_packages/4888
https://openproject.missinglinkelectronics.com/work_packages/4916
https://openproject.missinglinkelectronics.com/work_packages/5007
https://openproject.missinglinkelectronics.com/work_packages/4805
https://openproject.missinglinkelectronics.com/work_packages/4741
https://openproject.missinglinkelectronics.com/work_packages/4700
https://openproject.missinglinkelectronics.com/work_packages/4700

MLE TB20231031

○ ETHERNET

■ #4606 - add padding for frames smaller than 60 Bytes

○ TCP
■ #4609 - remove maximum TCP Session limit

○ UDP
■ #4557 - fix length assignment in UDP Interface Adapter

● 1.7.1 (20211220)
○ GENERAL

■ #3951 - add missing reset signal
■ #4412 - fix buffer generic ranges
■ #4416 - fix subnet mask assignment for no UDP setup

○ TCP
■ #4367 - fix tcp space available calculation for buffer sizes above

64KB
● 1.7.0 (20211101)

○ GENERAL
■ #3951 - remove unused altera_attribute
■ #4139 - allow set off RTO values in TCP session establish state

● 1.6.2 (20210913)
○ GENERAL

■ #3981 - remove unused altera_attribute
● 1.6.1 (20210801)

○ UDP
■ #3969 - fix use of ceil function

● 1.6.0 (20210701)
○ GENERAL

■ #3916 - rename / fix generic names
● 1.5.3 (20210301)

○ UDP
■ #3549 - fix bus scheduler bus handling

● 1.5.2 (20201101)
○ TCP

■ #3091 - fix ack command fifo interface handling
● 1.5.1 (20201001)

○ ARP
■ #2924 - fix handshake between ARP and bus scheduler

○ TCP
■ #2539 - fix possible wrong MAC usage in multi session

configuration
■ #2923 - fix data acceptance criteria from application

● 1.5.0 (20200901)
○ GENERAL

MLE NPAP TB20231031 2023-10-31 Page 29

https://openproject.missinglinkelectronics.com/work_packages/4606
https://openproject.missinglinkelectronics.com/work_packages/4609
https://openproject.missinglinkelectronics.com/work_packages/4557
https://openproject.missinglinkelectronics.com/work_packages/3951
https://openproject.missinglinkelectronics.com/work_packages/4412
https://openproject.missinglinkelectronics.com/work_packages/4416
https://openproject.missinglinkelectronics.com/work_packages/4367
https://openproject.missinglinkelectronics.com/projects/npap/work_packages/3951/activity
https://openproject.missinglinkelectronics.com/projects/npap/work_packages/4139/activity
https://openproject.missinglinkelectronics.com/projects/npap/work_packages/3981/activity
https://openproject.missinglinkelectronics.com/projects/npap/work_packages/3969/activity
https://openproject.missinglinkelectronics.com/work_packages/3916
https://openproject.missinglinkelectronics.com/work_packages/3549
https://openproject.missinglinkelectronics.com/work_packages/3091
https://openproject.missinglinkelectronics.com/work_packages/2924
https://openproject.missinglinkelectronics.com/work_packages/2539
https://openproject.missinglinkelectronics.com/work_packages/2923

MLE TB20231031

■ #2254 - change 100ms clock not generated inside NPAP wrapper
■ #2848 - change application clocking by removing TCP and UDP

application clock
○ IP

■ #2239 - change default configuration for IP filter, now enabled
○ DHCP

■ #2858 - change increase DHCP usability by adding try counter,
valid signal and new timeout behaviour

■ #2737 - fix DHCP lease calculation
○ TCP

■ #2703 - fix payload length update behaviour in transmit
controller

■ #2727 - fix acknowledgment number update behaviour in
transmit controller

■ #2831 - fix FSM handshake in transmit controller which could lead
to TCP session freeze

● 1.4.9 (20200702)
○ IGMP

■ #2704 - change disable IGMP per default
■ #2496 - fix compiler warning about latch implementation

○ TCP
■ #2706 - change TCP tx data path in asynchronous mode
■ #2627, #2688, #2693, #2701, #2702 - fix TCP tx splitter, rework

after multiple bugs
■ #2692 - fix used TCP tx splitter generic
■ #2711 - fix transmit controller fsm reset generation

● 1.4.8 (20200430)
○ TCP

■ #2477 - fix TCP retransmission buffer delete handling
● 1.4.7 (20200331)

○ TCP
■ #2180 - change TCP tx splitter to work with byte granularity
■ #2097 - fix TCP multi session reset synchronization
■ #2339 - fix TCP application reset clock domain crossing

● 1.4.6 (20200303)
○ GENERAL

■ #2469 - fix default gateway IP address usage
○ TCP

■ #2468 - add register stage to TCP TX application interface to ease
timing on Virtex 6

● 1.4.5 (20200220)
○ GENERAL

■ #2449 - fix Xilinx ISE 14.7 workflow

MLE NPAP TB20231031 2023-10-31 Page 30

https://openproject.missinglinkelectronics.com/work_packages/2254
https://openproject.missinglinkelectronics.com/work_packages/2848
https://openproject.missinglinkelectronics.com/work_packages/2239
https://openproject.missinglinkelectronics.com/work_packages/2858
https://openproject.missinglinkelectronics.com/work_packages/2737
https://openproject.missinglinkelectronics.com/work_packages/2703
https://openproject.missinglinkelectronics.com/work_packages/2727
https://openproject.missinglinkelectronics.com/work_packages/2831
https://openproject.missinglinkelectronics.com/work_packages/2704
https://openproject.missinglinkelectronics.com/work_packages/2496
https://openproject.missinglinkelectronics.com/work_packages/2706
https://openproject.missinglinkelectronics.com/work_packages/2627
https://openproject.missinglinkelectronics.com/work_packages/2688
https://openproject.missinglinkelectronics.com/work_packages/2693
https://openproject.missinglinkelectronics.com/work_packages/2701
https://openproject.missinglinkelectronics.com/work_packages/2702
https://openproject.missinglinkelectronics.com/work_packages/2692
https://openproject.missinglinkelectronics.com/work_packages/2711
https://openproject.missinglinkelectronics.com/work_packages/2477
https://openproject.missinglinkelectronics.com/work_packages/2180
https://openproject.missinglinkelectronics.com/work_packages/2097
https://openproject.missinglinkelectronics.com/work_packages/2339
https://openproject.missinglinkelectronics.com/work_packages/2469
https://openproject.missinglinkelectronics.com/work_packages/2468
https://openproject.missinglinkelectronics.com/work_packages/2449

MLE TB20231031

● 1.4.4 (20200213)
○ TCP

■ #2086 - fix retransmission lockup
■ #2112 - fix fsm lockup in transmit controller

● 1.4.3 (20200116)
○ ARP

■ #2179 - fix ARP cache ip address lookup
● 1.4.2 (20200113)

○ GENERAL
■ #2294 - change delivered IP XACT constraint file

● 1.4.1 (20200107)
○ TCP

■ fix data type and IP core GUI handling of TCP sequence

number initialization

● 1.4.0 (20191126)
○ GENERAL

■ #1930 - add AXI4-Stream TCP application interface
■ #2151 - add customized block design configuration gui
■ #2166 - add example constrain file to IP XACT packaging
■ #2148 - fix block design gui NPAP name generic

○ TCP
■ #1939 - fix space available calculation which lead to duplicated

data beat
■ #2181 - fix TCP tx splitter timeout

● 1.3.0 (20191002)
○ GENERAL

■ #1682 - add IP XACT TCP/UDP wrapper and packaging
● 1.2.0 (20190920)

○ GENERAL
■ #2075 - add packaging infrastructure for TCP source code release

● 1.1.0 (20190705)
○ ARP

■ #1719 - add new ARP cache size generic
■ #1698 - fix internal race condition during initialization

○ UDP
■ #1720 - fix retry mechanism on failed ARP lookup

● 1.0.0 (20181023)
○ GENERAL

■ #1320 - add NPAP to MLE Vivado build toolchain
■ #1326 - add IP XACT UDP wrapper and packaging
■ #1133 - fix bus scheduler grant timeout

MLE NPAP TB20231031 2023-10-31 Page 31

https://openproject.missinglinkelectronics.com/work_packages/2086
https://openproject.missinglinkelectronics.com/work_packages/2112
https://openproject.missinglinkelectronics.com/work_packages/2179
https://openproject.missinglinkelectronics.com/work_packages/2294
https://openproject.missinglinkelectronics.com/work_packages/1930
https://openproject.missinglinkelectronics.com/work_packages/2151
https://openproject.missinglinkelectronics.com/work_packages/2166
https://openproject.missinglinkelectronics.com/work_packages/2148
https://openproject.missinglinkelectronics.com/work_packages/1939
https://openproject.missinglinkelectronics.com/work_packages/2181
https://openproject.missinglinkelectronics.com/work_packages/1682
https://openproject.missinglinkelectronics.com/work_packages/2075
https://openproject.missinglinkelectronics.com/work_packages/1719
https://openproject.missinglinkelectronics.com/work_packages/1698
https://openproject.missinglinkelectronics.com/work_packages/1720
https://openproject.missinglinkelectronics.com/work_packages/1320
https://openproject.missinglinkelectronics.com/work_packages/1326
https://openproject.missinglinkelectronics.com/work_packages/1133

MLE TB20231031

○ ETHERNET
■ #1323 - add 64 and 128 bit AXI4-Stream interface option

○ IP
■ #1328 - fix IP header decoder data valid calculation for payloads

of 1 to 3 byte
○ UDP

■ #1322 - add AXI4-Stream UDP application interface
■ #1324 - add new generic to disable UDP TX aligner
■ #1132 - fix UDP tx fifo write count calculation
■ #1133 - fix UDP header encoder fsm timeout for ARP
■ #1327 - fix UDP throughput bottleneck for payload sizes less than

100 byte
■ #1330 - fix corrupt UDP data multiplexing for zero TCP

connections

MLE NPAP TB20231031 2023-10-31 Page 32

https://openproject.missinglinkelectronics.com/work_packages/1323
https://openproject.missinglinkelectronics.com/work_packages/1328
https://openproject.missinglinkelectronics.com/work_packages/1322
https://openproject.missinglinkelectronics.com/work_packages/1324
https://openproject.missinglinkelectronics.com/work_packages/1132
https://openproject.missinglinkelectronics.com/work_packages/1133
https://openproject.missinglinkelectronics.com/work_packages/1327
https://openproject.missinglinkelectronics.com/work_packages/1330

MLE TB20231031

Contact Info

Missing Link Electronics, Inc.
2880 Zanker Road, Suite 203
San Jose, CA 95134
Phone: +1-408-475-1490

Missing Link Electronics GmbH
Industriestraße 10
89231 Neu-Ulm
Tel. +49 731 141149-0

Email: sales-web@mlecorp.com

http://www.missinglinkelectronics.com

Founded in 1949, the German Fraunhofer-Gesellschaft undertakes applied research of
direct utility to private and public enterprise and of wide benefit to society. With a
workforce of over 23,000, the Fraunhofer-Gesellschaft is Europe’s biggest organization
for applied research, and currently operates a total of 67 institutes and research units.
The organization’s core task is to carry out research of practical utility in close
cooperation with its customers from industry and the public sector.

Fraunhofer HHI was founded in 1928 as “Heinrich-Hertz-Institut für
Schwingungsforschung“ and joined in 2003 the Fraunhofer-Gesellschaft as the
“Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institut”. Today it is the
leading research institute for networking and telecommunications technology, “Driving
the Gigabit Society” .

MLE NPAP TB20231031 2023-10-31 Page 33

mailto:sales-web@mlecorp.com
http://www.missinglinkelectronics.com
http://www.hhi.fraunhofer.de

