Light Rabbit

Implementing a White Rabbit node on COTS AMD development boards without relying on external VCXOs

Frederik Pfautsch, Ulrich Langenbach

2024-03-20

6G-ICAS4Mobility: Scenario

Integrated Communication and Sensing in 6G for stationary and mobile nodes

Ê. anananan Koordination Sidelink Komm. (PoC #4) Sidelink ICAS (Poc #1,3) koop. Radar (PoC #2)

mle

13th WR workshop and WR Collaboration Launch, Geneva (Switzerland)

[24]

6G-ICAS4Mobility: An example node structure

White Rabbit ... on an Ettus X310 USRP

- AMD Kintex-7 XC7K410T FPGA
- PCle
- 2x SFP+ (10G or 1G)
- Optional GPSDO
- DA-15 GPIO port
- 2x RF Front-End Daughter Board slots

 \Rightarrow No VCXOs!

- \Rightarrow No QPLLs with FRAC-N support!
- \Rightarrow 7Series fabric \Rightarrow use MMCMs!

2024-03-20

MMCM-based Implementation

- Clock oscillator can have any reasonable frequency
- Frequency is adjusted by repeated phase shifts
- PLL for cleaning chained behind phase-shifting MMCM

MMCM: Dynamic Phase Shift Interface

ug472_c2_04_062210

- Add up (unsigned part of) 16 Bit DAC value every 12 cycles
- Sign bit \rightarrow PSINCDEC
- On wraparound \rightarrow PSEN = '1'
- Shift by 1/56 th of a VCO period

2024-03-20

Measurement Setups

TAPR-TICC (PPS), D-DMTD on ZC706 (10 MHz)

R&S RTO1044

2024-03-20

D-DMTD based Measurement Setup: 10MHz

- Employ D-DMTD again
 N = 999
 W = 62
 - \Rightarrow 10ps resolution
- Compare to *Seven Solutions* WR switch
- Gather phase and frequency information

Allan Deviation: MMCM-based

TAPR-TICC based Measurement Setup

2024-03-20

Histogram: MMCM-based

D-DMTD based Measurement Setup

2024-03-20

10MHz TIE: MMCM-based

Spectrum 10 MHz: MMCM-based

532 mV 232 mV 232 mV -168 mV -468 mV	Diagram1: Ch2	52 ms		-4.4 ms	4 ms	-3.6 ms	-32 ms	-2.8 ms	Horizontal Res:100 ps / 10 GSa/s RL: 40 MSa RT Scl: 400 µs/div Pos:-3,9994425 ms Trigger Normal
532 mV	Zoom1: Ch2								A: Edge <u>↓</u> Ch1 Lvl: 250 mV
- 432 mV - 332 mV - 232 mV - 132 mV - 32 mV - 22									Ch2Wim1 ■ Scl: 100 mV/div Pos: 0 div Off: 32 mV Cpl: DC 50Ω Dec:Sa TA: Off BW: 4 GHz
68 mV-		1			·			1	Math1 📼
-168 mV -268 mV									Scl: 10 dB/div Off: -35 dBm FFTmag(Ch2)
-468 mV					50 ns/div				RBW: 500 KH2
15 dBm	Diagram2: M1		•••••	···· ·		·····	•••••		· · · · · · · · · · · · · · · · · · ·
-5 dBm-	1								
25 dBm	-		<u>^</u>		. <u>A</u>				<u>,</u>
-35 dBm	++						·····		
-45 dBm									
-55 dBm					1				
-65 dBm	- Andreas and	and Charles	or on called	1000	- Alexandra	ner a la constante de la consta	A LAND		
-85 dBm	15 MHz	30 MHz	45 MHz	60 MHz	75 MHz	90 MHz	105 MHz	120 MHz	135 MHz 150 MHz

R&S FFT R&S RTO1044

VERANO: In-vehicle Radar Networks

Radar Network Demonstrators

- Al based Radar Image Processing
- Radar Image Compression
- OFDM Radar, etc.
- Radar Imaging
- Front-end research

Frequency/ Trigger Distribution via

- Coax cable
- Ethernet with PTP v2.1
- Wireless LO distribution

VCXO Technologies (Dormouse FMC Card)

- AMD ZUP/RFSoC GTHe4/GTYe4 QPLL
- SiT3521

[18]

V=R∧N⊚

QPLL-based Implementation

- Multiple GTH Quads
- External fixed GTH reference clock slightly below 125 MHz
- QPLL output clock needs to pass through a channel TX to be available in fabric
- Frequency is adjusted using the QPLL "SDM" feature

10MHz TIE: QPLL-based

mle

Spectrum 10 MHz: QPLL-based

R&S FFT R&S RTO1044

Dormouse: an FMC Card based on the FCWR Card

2024-03-20

Conclusion

- Loss of accuracy compared to "conventional" VCXOs
- QPLL (Ultrascale fabric) has higher precision and accuracy (than MMCM)
- MMCMs are more widely available, requires less resources

⇒ What's next? Work-in-progress...

- Absolute Calibration with the special SFP Loopback Module
- Measure FPGA-internal (bitstream) delays and jitter effects
- Investigate effects of phase-shifting MMCM
- Investigate reset and power-on randomness

Thank You!

- DESY for providing loaner of a White Rabbit Switch
- U Ulm for supporting the measurements, e.g. with their R&S RTO, etc.
- BMBF for funding the 6G-ICAS4Mobilitx and VERANO projects

