

TCP/IP for Real-Time Embedded Systems The Good, The Bad, The Ugly

MLE Mission: "From Software to Silicon!"

High-Performance (Embedded) Compute & Connected Systems-of-Systems need "Offload Engines" for better performance, lower and deterministic latency and improved energy efficiency.

Focus on standards such as PCIe, NVMe, Ethernet, TCP/UDP/IP, TSN.

Multi-Gigabit Real-Time Networking Market & Technology Forces

6G Radio Integrated Communication and Sensing (ICAS) Zone-Based In-Vehicle Networking (Auto/TSN)

100G Real-time Backbone for Virtualized PLC (Robo/TSN)

Work Motivation

Systems-of-systems

- Al inference using high-data-rate sensors (Camera, Radar, Lidar)
- Tightly-coupled: i.e. distributed processing with microservices
- Loosely-connected via networks (which continuously are the bottleneck)

Need to optimize

- for power / energy efficiency
- for throughput
- for (deterministic) latency and real-time delivery

Domain-Specific Architectures:

- "Offload" (protocol) processing but yet adhere to (defacto) standards and APIs
- Make networks more deterministic and Time-Sensitive

TCP - The Good

- Very well known protocol, mature (50 year anniversary)
- Reliable, scalable, packet transport
- Ubiquitous use in networking: LAN, WAN, WiFi, 3GPP mobile
- Stream-based with backpressure
 - ⇒ Allows to implement self-synchronized dataflow processing systems

TCP - The Bad

- Large compute burden for TCP in SW
- Different behavior across different implementations

• However, TOEs (TCP Offload Engines) and TCP Full Accelerators exist

Netperf TCP_STREAM Results - CPU Load

Tx Side

Rx Side

Netperf TCP_STREAM Results: Efficiency

Tx Side

Rx Side

Benefits of PC-Side TCP Full Accelerators

With PC-side TCP Full Accelerators:

- All PC CPU cores can fully be used for sensor data processing
- Round-trip time (RTT) is minimal, so only small Tx buffers are needed in the sensor-side FPGA
- All data streams between sensor and server can be prioritized using QoS, scheduling, traffic shaping etc
- Optional in-network processing with IEEE 1588-2019 HA PTP

Unaccelerated PC:

- Precious CPU cores are consumed for network protocol processing
- Round-trip time (RTT) is high which eats up BRAM resources in the sensor-side FPGA
- TCP scheduling and congestion control restricted to Operating System capabilities

Courtesy of John Ousterhout, Stanford University

Courtesy of John Ousterhout, Stanford University

Courtesy of John Ousterhout, Stanford University

1. TCP Byte Streams, cont'd		
Sender (messages) Head-of-line blocking: Short messages can get stud High tail latency	TCP (stream)	
October 26, 2022	It's Time to Replace TCP in the Datacenter	Slide 9

Courtesy of John Ousterhout, Stanford University

2. TCP is Connection-Oriented

Requires long-lived state for each stream

- ~2000 bytes per connection in Linux, not including packet buffers
- Individual datacenter apps can have thousands of connections
- Mitigate with connection pooling/proxies (e.g. Facebook)? Adds overhead
- Challenging for NIC offloading (e.g. Infiniband): thrashing in connection caches

Before sending any data, must pay round-trip for connection setup

- Problematic in serverless environments: can't amortize setup cost
- Motivation for connections:
 - Enable reliable delivery, flow control, congestion control
 - But, all these can be achieved without connections

October 26, 2022

It's Time to Replace TCP in the Datacenter

Courtesy of John Ousterhout, Stanford University

3. TCP Uses Fair Scheduling

- When loaded, share bandwidth equally among active connections
- Well-known to perform poorly: everyone finishes slowly
- Run-to-completion approaches (e.g. SRPT) are better
 - But requires message sizes

October 26, 2022

It's Time to Replace TCP in the Datacenter

Slide 12

Courtesy of John Ousterhout, Stanford University

4. TCP: Sender-Driven Congestion Control

• Senders responsible for scaling back transmission rates when needed

- But, they have no direct knowledge of congestion
- Congestion signals based on buffer occupancy:
 - Packets dropped if queues overflow
 - Congestion notifications based on queue length

• Problems:

- Significant buffer occupancy when system is loaded
- Queuing causes delays, especially for short messages

It's Time to Replace TCP in the Datacenter

Courtesy of John Ousterhout, Stanford University

1. Homa is Message-Based

- Dispatchable units are explicit in the protocol
- Enables efficient load balancing
 - Multiple threads can safely read from a single socket
 - Future NICs can dispatch messages directly to threads
- Enables run-to-completion (e.g. SRPT)

October 26, 2022

It's Time to Replace TCP in the Datacenter

Courtesy of John Ousterhout, Stanford University

2. Homa is Connectionless

- Fundamental unit is a remote procedure call (RPC)
 - Request message
 - Response message
 - RPCs are independent

No long-lived connection state

- (But there is long-lived per-peer state: ~200 bytes)
- No connection setup overhead •
 - Use one socket to communicate with many peers

Homa ensures end-to-end RPC reliability

No need for application-level timers

October 26, 2022

It's Time to Replace TCP in the Datacenter

Courtesy of John Ousterhout, Stanford University

Courtesy of John Ousterhout, Stanford University

•

•

•

Homa

- "peacefully co-exists with TCP
- behaves better in congested networks

MLE is implementing a Homa Accelerator <u>R</u>apid, <u>R</u>eliable, <u>R</u>equest-<u>R</u>esponse <u>P</u>rotocol (Quad-R P)

Our Contact Information

Missing Link Electronics, Inc. San Jose, CA 95134, United States

Missing Link Electronics GmbH 89231 Neu-Ulm, Germany

Email contact: sales-web@mlecorp.com

