missing link electronics

MLE TB 20201203

Deterministic Networking
with TCP-TSN-Cores
for 10/25/50/100 Gigabit Ethernet

MLE TB20201203

2020-12-03 1

mle

MLE TB 20201203

Summary

We all observe a growing need to connect computers with each other with shorter
delays (i.e. lower latencies) and higher bandwidth, in particular for High-Performance
Computing (HPC) in the Datacenter and in embedded systems such as advanced
industrial robotics or autonomous vehicles. Processing of TCP/IP based network
protocols at speeds of 10 Gbps and beyond demand kernel bypass solutions (such as
Intel's DPDK or Solarflare’s/Xilinx’ Onload or Mellanox/NVida VMA) and/or so-called TOEs
(TCP Offload Engines).

Domain-Specific Architectures (DSA) use so-called heterogeneous computing elements,
also known as Cores with the objective to put the compute burden where it belongs.
This is a well established approach going back to the early days when an x86 CPU was
partnered with an x87 for better floating-point processing. Today, it is common to

deploy various flavors of Cores, for example:

e DSP Cores for digital signal processing in telecommunications

e Shader Cores optimized for image processing, as they can be found in modern
Graphics Processing Units (GPU)

e Tensor Processing Units (TPU) Cores which are optimized for Artificial Intelligence

and Deep Learning

This is because such (special purpose) fixed-function or programmable function
accelerator Cores are optimized for a particular domain and, when properly used, not
only take processing load off the (general purpose) CPU but also deliver better overall
performance (which is data processed per time) and better efficiency (which is

performance per Watt).

Over the following pages we will make a case for processing TCP/IP over TSN over
10/25/50/100 Gigabit Ethernet on dedicated Cores which has significant advantages in
particular for real-time Ethernet and Deterministic Networking. These so-called
TCP-TSN-Cores can be integrated either in FPGAs or in SoCs (ASIC and ASSP). As we will
show, TCP-TSN-Cores are more than just a TOE - the commonly used approach for

network protocol acceleration. By running the entire network protocol stack from OSI

2020-12-03 2

MLE TB 20201203

Layer 2 to at least Layer 4 in a dedicated integrated circuit - a so-called Full Accelerator -

we can remove (general purpose) CPUs entirely from the datapath.

Hence, TCP-TSN-Cores can deliver very low bounded and deterministic latency with

predictable scalability needed for 10/25/50/100 Gigabit Deterministic Networking.
1. Deterministic Networking

Deterministic Networking (DetNet), according to RFC8655 from the IETF, combines the
Internet Protocol (IP) with Time-Sensitive Networking (TSN). Applications are Data
Center Local Area Network (LAN) as well as (Embedded) Systems-of-Systems used in
Industrial Robotic Systems or Autonomous Vehicles or modern Automotive Zone-Based

Architectures.

TSN started as AVB (Audio-Video Broadcasting), a networking initiative aimed to improve
audio/video transports by better management of network latencies. Today, TSN has
become a set of emerging, open IEEE standards with momentum in industrial markets
(for 10/100/1000 Mbps speed) and in next-generation Automotive Zone architectures
(for 10/25/50 Gbps speeds). Aspects such as Time-Aware Traffic Shaping also find
application in telecommunication, Provider Back-Bone (PBB) Switching or
Software-Define Wide Area Networks (SD-WAN), for example.

Cournsy: Janos. Farkasfienossan.oom

4 N
TSN Components

Time sync:
Timing and Sync {angms: r N Ultra reliability:
inelud file of IEEE 1588 P X F Repl & Elim (802.1CB
. Synchronization Pt Control 90210000 |

Per-Streaam Filtening (B02, 10¢i)
Time sync (PB02.1A5-Rev)

Reliability

Bounded low latency: i
Credit Based Shaper (802.1Qav) Resource Mgm) | | Dedicated resources
Preemption (802.3br & 802.1Qbu) | _ j & API
Scheduled Traffic (802.10bv) Y Stream Resv Prot (B02.1Qat)
Cyclic Q-ing & Fwd (802.10Qch) TSN configuration (PB02.10Qcc)
Async Shaping (P802.1Qcr) =2 Zero congestion loss <—{ YANG (P802.1Qcp, etc.)
Link-local Resv Prot (PB02.1CS)

2020-12-03 3

mle

missing link electronics

MLE TB 20201203

TCP is the Transmission Control Protocol specified by the IETF (RFC793). Together with
UDP (User Datagram Protocol - RFC768) it belongs to the well-known, well understood,
ubiquitous, easy to deploy and to maintain transport protocols the Internet depends on.
Unlike UDP, TCP is considered a reliable protocol because of the provisions to
re-transmit packets lost in transport. TSN and TCP can be combined according to the

OSI Layers:

Deterministic but not reliable Deterministic and reliable

Layer 5-7

Layer 1 IEEE 802.3 Standardized PHYs

The outcome is a deterministic and reliable network protocol, which makes TCP/IP over
TSN a very good candidate for all networking where IT (Information Technology) and OT
(Operations Technology) converge, or in Systems-of-Systems backbones such as

Automotive Zone Architectures.

The key challenge, however, lies in the computational burden when running
Deterministic Networking in software on a (general purpose) CPU, as the anatomy of a

TCP connection (sometimes referred to as a TCP socket) shows.
2. Anatomy of TCP/IP Processing

As Ethernet line rates continue to increase, the bottlenecks in network protocol
processing software become more visible. Basically, the time-to-transport has improved

much more than the time-to-compute, as the following Figure shows:

2020-12-03 4

MLE TB 20201203

Initiator (client) Receiver (server)

Time-to-transport

Time-to-compute

Time-to-transport

Time-to-compute

Time-to-transport

lime-to-compute

Time-to-transport

Time-to-compute

Time-to-transport
Time-to-compute

Time-to-transport

Time-to-compute

Time-to-transport |

For 10 Mbps Ethernet the time-to-transport for example a TCP SYN packet (40 Bytes)
took 32 microseconds which, time-wise, was equivalent to 3200 instructions on a (then)
100 MIPS CPU. For 100 Gbps Ethernet the time-to-transport for the same TCP SYN
packet has shortened to 3.2 nanoseconds, or the equivalent of 10 instructions on a
3000 MIPS CPU - assuming best-case with no cache misses. This disparity between the
time-to-transport and the time-to-compute in combination with the time required for
the initial handshake for TCP is one of the reasons why applications are looking at
UDP-based protocols such as IETF QUIC.

However, many (not all but more than a few) applications require a reliable transport,
industrial and automotive networking for example, and will benefit from Deterministic

Networking run on dedicated TCP-TSN-Cores.
3. TCP-TSN-Core Architecture

The use of Full Accelerators for TCP/UDP/IP processing, a key ingredient in
TCP-TSN-Cores, goes back to 2010 when the Fraunhofer Heinrich-Hertz Institute (HHI) in

2020-12-03 5

mle

missing link electronics

MLE TB 20201203

Berlin, Germany, started implementing Network Protocol Accelerator Platforms (NPAP)
in ASIC and FPGA. Unlike in TOEs where significant processing of TCP still happens in
adjacent CPUs (with or without kernel bypasses), Full Accelerators run the entire TCP

stack in a dedicated digital circuit.
3.1. TCP/UDP/IP Full Accelerators

The key advantage of TCP-TSN-Cores is the high level of determinism because
processing throughput can be predicted at nano-second accuracy as the Full Accelerator
circuit typically runs at multiple 100s of MHz clock speed and needs very little internal
FIFO buffers.

Such a TCP-TSN-Core is shown in the following block diagram:

A A A

3
S v k.
= TSN_ctrl stack_ctrl
. DMA to CPU
> MAC ETH IP UDP TCP (optional)
" [=
&
o
- Y A [—

5

5

5

& Iz

g =T

~ =i

= B

o g 3

== 8s

@

& g3

- 2

il 5

7 EES

~ (L=

£

(IPMS) (HHT)

The datapath goes horizontally, with ingress and egress 10/25/50/100 Gigabit Ethernet
on the left into/out of dedicated FPGA/ASIC hardware blocks:

e TSN and Ethernet Media Access Controller (MAC)
e Ethernet management (including ARP)
e |Pv4 (including ICMP for network management and diagnostics plus IGMP for

group management)

2020-12-03 6

mle

MLE TB 20201203

e one UDP block (taking care of all UDP packets)
e one TCP block per TCP connection (picture shows 12)

Connectivity between these hardware blocks is via bi-directional 128-bit wide
AXl4-Streams, which can scale to 50 Gbps line-rate in FPGA and 100 Gbps line-rate in
ASIC. The control flow is shown here vertically with means to set MAC addresses, IP
addresses, plus a command interface to manage (open, configure and close) TCP
connections. Control flow including TSN configuration can be implemented via
hardware state machines or via software. On-chip Full Accelerators (bottom right in the
block diagram) can either implement application-level data processing, or data can be
sent to and/or received from adjacent CPUs, SoC-style with integrated CPUs or via

PCle-connected Host CPUs.
3.2. TSN Subsystem

A typical TSN subsystem is hardware blocks plus software for system configuration. The
following shows an exemplary implementation of such a hardware block from
Fraunhofer IPMS, Germany, which shows the TSN Endpoint (which handles Time
Synchronization, does Traffic Shaping, etc) as well as a so-called TSN Switched Endpoint
with two ports. TSN Switched Endpoints allow daisy-chaining and facilitate redundancy

needed for Functional Safety or High Availability.

{ ey resan i H moio |4

p— e TSN-EP "'.'Hil e Configuration
=11} - - —#
¥ ———— TSU (T & Status
0 TSN-EP
. | s | =
‘‘‘‘‘ " — —] e =¥ g
— J | Host TSN -SE
prap— e, I Port " é
:' w§ire = 5
: —
ol U (Re) — - 27 o ‘
e PMAC . T
z [annmesanmanl | Moo |

T

Real-time configuration needs little compute performance and runs in software either
on the Host CPU (which can be PCle-connected) or SoC-style on an embedded CPU.
Unlike in a typical CPU/software implementation where the “upstream” port of the TSN

Switched Endpoint connects to a DMA engine, in a TCP-TSN-Core this is connected to

2020-12-03 7

mle

MLE TB 20201203

the TCP/IP Full Accelerator (which, obviously, must be aware of multiple streams and

shall support traffic preshaping).
4. Architectures with TCP-TSN-Cores

The key to implementing cost-efficient architectures with TCP-TSN-Cores is to

complement both approaches:

1. Processing in hardware on dedicated TCP-TSN-Cores - which has the advantage
that TCP/IP processing can happen at line rate. The downside is that
TCP-TSN-Cores do require precious silicon real estate so we are limited by the
number of parallel open TCP connections at any given time. And, you can only
process those protocols for which resource efficient Application-Layer Full
Accelerators exist.

2. Processing in software on (general purpose) CPUs - which can be in the operating
system (Linux) kernel with or without a “Bypass” such as DPDK, for example. The
strength is that you can have millions of open TCP connections at any time, and
that software covers all application-layer protocol functionalities needed. The

downside is much higher latency than running TCP/IP on dedicated TCP-Cores.

While most of the hardware blocks can be shared among a single Ethernet port, the Full
Accelerator approach from Fraunhofer HHI requires multiple TCP blocks. To process the
state information of a TCP connection a dedicated TCP block has to be available in
hardware. Obviously, a single TCP block can process many TCP connections
sequentially, as soon as the prior TCP connection is closed, which leads us to the

concept of a pipelining architecture.
4.1. Pipelining with TCP-TSN-Cores

TCP-TSN-Cores need more hardware resources than a TOE which made quite a
difference in 2010. However, today most applicable FPGAs such as Stratix-10 or Agilex
from Intel or Virtex UltraScale+ or Versal Prime from Xilinx have plenty of resources and
allow implementing TCP-TSN-Cores which can process dozens of TCP connections at the

same time (as a rule of thumb, an extra TCP block needs approx. 10k ALMs in Intel

2020-12-03 8

mle

missing link electronics

MLE TB 20201203

Stratix-10 or 10k LUTs in Xilinx UltraScale+). Hence, you can process dozens of TCP

connections open at the same time, but not millions.

To make TCP-TSN-Cores resource efficient it is important to “time-share” the TCP blocks
in the TCP-TSN-Cores: Once a TCP connection has been closed, the corresponding TCP
block can serve another TCP connection. This is shown in the following Figure with a
TCP-TCN-Core which features a total of 12 instances of TCP blocks:

Implementing such a pipelining approach is facilitated by yet another advantage of
TCP-TSN-Cores: Opening, processing and closing takes significantly less time compared
to software, if the network is fast, and if the counterpart is also fast. Best is to have

similar TCP-TSN-Cores on either side of the TCP connection.

Fast processing of many very short TCP connections is needed in many Datacenter
applications, for example in database caching such as Memcached or other Key-Value

Stores including NoSQL databases.
4.2. Stream Processing with TCP-TSN-Cores

Other sweet-spots for TCP-TSN-Cores are network applications which require few
long-lasting and very compute intense TCP connections. Examples are distributed
data-in-motion processing as we see this in video streaming applications or in
networked computational storage (CSx). This is referred to as Stream Processing and for

such applications you combine both approaches.

2020-12-03 9

mle

missing link electronics

MLE TB 20201203

This can be visualized by the following Figure which shows a TCP-TSN-Core with 4

instances of a TCP block processing two separate compute intensive applications.

Upfront, you select those network protocols which shall run in hardware on dedicated

TCP-TSN-Cores. TCP-TSN-Cores work best when processing needs to happen at line-rate
and for protocols for which resource efficient Application-Layer Full Accelerators exist.
This allows to keep the “heavy traffic” away from the Host CPUs. When computational
storage using NVMe SSDs is involved, PCle Peer-to-Peer between the TCP-TSN-Core and

the NVMe SSD can further improve the overall system performance and efficiency.

Obviously, all other network traffic runs in software (with or without kernel bypass, with

or without TOEs) as we would do without any TCP-TSN-Cores.

While this allows you to support millions of open TCP connections at any time, and to
support all application-layer protocols, such an architecture which assigns certain
protocols to TCP-TSN-Cores and others to software may be a bit too static. Which leads

us to the concept of Hybrid Acceleration.
4.3. Hybrid Acceleration with TCP-TSN-Cores

Hybrid Acceleration is a concept where TCP/UDP/IP processing can either be run in
software on a (general purpose) CPU or in hardware on TCP-TSN-Cores. For UDP
streams this is relatively easy. But TCP keeps state information for each connection
(including the TCP session quintuple), thus Hybrid Acceleration must be able to “swap”
this TCP state information between the software stack and the corresponding TCP-Core.
TCP-TSN-Cores do support storing and loading TCP states in general. The opacity of

DPDK makes integrating such a mechanism for “swapping TCP states” feasible.

Furthermore, today there are some interesting choices for FPGA-based SmartNICs
which can implement such a Hybrid Acceleration, and which can effectively deliver a
multi-stage processing approach for network protocol acceleration. Examples are
Inventec's C5020X or the Alveo U25 SmartNIC from Xilinx.

2020-12-03 10

MLE TB 20201203

(intel)
ol

ATHATIN T

PCle Gend x8 | PCle Gerd xB

When using such FPGA-Based SmartNICs, network protocol processing can be

performed on three stages using three different cores, as the following Figures shows:

i ™y i Ty

' ™y
Host CPU
with standard
NIC interface
L A

L vy

S

Here, all network traffic enters (and leaves) the system via a powerful FPGA. Within the
FPGA TCP-TSN-Cores act as a first processing stage and immediately take care of certain
“heavy” network traffic or of the “real-time” data. This can be done using pipelined
architectures of TCP-TSN-Cores or by Stream Processing. In a second processing stage,
which complements the TCP-TSN-Cores, a companion CPU runs an optimized TCP/IP
stack such as DPDK. Hybrid Acceleration allows to swap TCP states between the first two
stages. Finally, all network traffic that has not been handled by those two stages is sent
to the Host CPU via PCle. For this PCle drivers basically implement a Network Interface
Card (NIC) function.

2020-12-03 11

mle

MLE TB 20201203

Having this companion CPU in the SmartNic provides several advantages:

e Network traffic can be handled very predictably because the companion CPU
never has to process user applications with “unexpected” load

e The software stack of the Host CPU becomes independent of “special” network
functionality such as kernel bypasses

e System maintenance gets easier as the software for the companion CPU can be
optimized and hardened on its own

e System security is improved as the network stack for the SmartNIC can
additionally be hardened

e Hardware security features can be deployed without having to make the Host

system trusted
5. Conclusion and Backgrounder

TCP-TSN-Cores integrate TSN Switched Endpoints for Time Sensitive Networking
functionality with Full Accelerators for TCP/UDP/IP processing in hardware. The
outcome delivers not only very deterministic transport at bounded, low-latency, but also
very high throughput that scales with 10/25/50/100 Gigabit Ethernet line-rates.

When TCP-TSN-Cores are complemented with state-of-the-art kernel bypass (DPDK, for
example) and/or TCP Offload Engines (TOE) they enable Hybrid Acceleration for all
relevant network protocols. This takes heavy and/or latency-sensitive network traffic off
the Host CPU.

TSN is Time Sensitive Networking, an IP Core for FPGA/ASIC from Fraunhofer Institute
for Photonic Microsystems (IMPS). Fraunhofer IPMS is a worldwide leader in research
and development services for electronic and photonic microsystems in the fields of
Smart Industrial Solutions, Medical & Health applications and Improved Quality of Life

and is located in Dresden, Germany.

NPAP is the Network Protocol Accelerator Platform, an IP Core for FPGA/ASIC from
Fraunhofer Heinrich-Hertz Institute (HHI). Fraunhofer HHI focuses on 10 to 100 Gbit
transmission in the field of high-performance telecom components and on mobile
broadband systems. Fraunhofer HHI is located in Berlin, Germany.

2020-12-03 12

mle

MLE TB 20201203

MLE (Missing Link Electronics) is offering technologies and solutions for Domain-Specific
Architectures, which focus on heterogeneous computing using FPGAs. MLE is

headquartered in Silicon Valley with offices in Neu-Ulm, Germany.

Authors and Contact Information

Ulrich Langenbach, Dir. Engineering, Missing Link Electronics GmbH
Endric Schubert, PhD, CTO, Missing Link Electronics, Inc.

Missing Link Electronics, Inc.
2880 Zanker Road, Suite 203
San Jose, CA 95134, USA
+1-408-475-1490

Missing Link Electronics GmbH
Industriestrasse 10
89231 Neu-Ulm

Germany

www.missinglinkelectronics.com

2020-12-03 13

http://www.missinglinkelectronics.com/

